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Abstract
We approach productivity in science in a longitudinal fashion: We track scientists’ 
careers over time, up to 40 years. We first allocate scientists to decile-based publish-
ing productivity classes, from the bottom 10% to the top 10%. Then, we seek pat-
terns of mobility between the classes in two career stages: assistant professorship 
and associate professorship. Our findings confirm that radically changing publishing 
productivity levels (upward or downward) almost never happens. Scientists with a 
very weak past track record in publications emerge as having marginal chances of 
becoming scientists with a very strong future track record across all science, technol-
ogy, engineering, mathematics, and medicine (STEMM) fields. Hence, our research 
shows a long-term character of careers in science, with one’s publishing productiv-
ity during the apprenticeship period of assistant professorship heavily influencing 
productivity during the more independent period of associate professorship. We use 
individual-level microdata on academic careers (from a national registry of scien-
tists) and individual-level metadata on publications (from the Scopus raw dataset). 
Polish associate professors tend to be stuck in their productivity classes for years: 
High performers tend to remain high performers, and low performers tend to remain 
low performers over their careers. Logistic regression analysis powerfully supports 
our two-dimensional results. We examine all internationally visible Polish associate 
professors in five fields of science in STEMM fields (N = 4,165 with  Nart = 71,841 
articles).
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Introduction

In the present article, we address a simple research question about the impact of 
prior individual research productivity on current research productivity. Assuming 
that scientists can change productivity classes during their careers, we seek patterns 
of mobility between productivity classes in the five fields of science comprising 12 
disciplines.

We examine the changing productivity of 4,165 Polish science, technology, engi-
neering, mathematics, and medicine (STEMM) scientists as they move up the aca-
demic ladder. All examined scientists are associate professors employed full time in the 
higher education sector, and they all have both doctoral and postdoctoral (habilitation) 
degrees. Combining demographic and biographical data based on a national registry 
of scientists (N = 99,935) with our own computations based on Scopus metadata on all 
Polish research articles indexed over the past half a century (1973–2021, N = 935,167), 
we examine individual scientists who change their productivity classes over time, here 
for a period spanning up to 40 years (range of biological age in the sample: 30–70). Our 
focus is on the two career stages of assistant professorship and associate professorship, 
at which the vast majority of Polish academic scientists are currently located (GUS, 
2023).

Our point of departure is allocating all associate professors who are internation-
ally visible in the Scopus database to 10 current productivity classes for the period of 
2018–2021 (by productivity deciles). Then, we examine their past productivity when 
they were assistant professors, compare them with their peers in their own fields of sci-
ence, and retrospectively allocate them to 10 past productivity classes (again from the 
top to the bottom classes). We unpack the details of scientists’ individual trajectories in 
these two career stages, linking current and past productivity for each individual sci-
entist, before then examining the mobility between productivity classes by field of sci-
ence and productivity type. In particular, we are interested in comparing mobility pat-
terns between productivity classes in terms of four types of productivity—full counting 
and fractional counting—in both (journal) prestige–normalized and non-normalized 
versions.

Consequently, our approach is longitudinal (tracing the productivity of the very 
same scientists over time) and classificatory (examining productivity changes in terms 
of 10 decile-based productivity classes rather than publication numbers; the top 10% 
is a classic measure of productivity inequality, see, e.g., the “top scientists” in Abramo 
et  al., 2017). We examine scientists from the top and from the bottom productivity 
classes who change classes over time from a relative perspective: Class identification 
is possible by studying the productivity of individuals in relation to the productivity 
of other individuals (as in the studies of research stars; see, e.g., Aguinis & O’Boyle, 
2014: 313–315; DiPrete & Eirich, 2006: 282).
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Theoretical Framework

Persistent Inequality in Academic Knowledge Production

Based on prior research on high productivity (Abramo et  al., 2009a, 2009b; Fox & 
Nikivincze, 2021; Kwiek, 2016; Yin & Zhi, 2017), we focus on the persistence of top 
productivity and of bottom productivity over time as scientists move up the academic 
ladder. Our intuitions are based on prior theories in the sociology of science and eco-
nomics of science, according to which top-productive scientists tend to keep being 
top-productive and bottom-productive scientists tend to keep being bottom produc-
tive while nonproductive scientists tend to leave the academic science sector (Allison 
& Stewart, 1974: 596; Allison et al., 1982: 615; Cole & Cole, 1973: 114; Turner & 
Mairesse, 2005: 3).

The steep performance stratification of scientists and persistent inequality in aca-
demic knowledge production have been examined for a long time, with foundational 
analyses being given by Alfred Lotka (1926), de Solla Price (1963), Robert K. Merton 
(1968), Cole and Cole (1973) and others inspiring generations of theoreticians. The 
old research theme, summarized as “the majority of scientific work is performed by a 
relatively small number of scientists” (Crane, 1965: 714), has been at the core of these 
theories of individual research productivity.

The mechanisms behind accumulative advantage (and disadvantage) have been 
studied for decades (Alison et al., 1982; Allison & Stewart, 1974; Cole & Cole, 1973; 
DiPrete & Eirich, 2006; Merton, 1968), as have other major theories of research pro-
ductivity, such as sacred spark theory (Allison & Stewart, 1974; Cole & Cole, 1973; 
Fox, 1983; Zuckerman, 1970) and utility maximization theory (Kyvik, 1990; Stephan 
& Levin, 1992). Built-in undemocracy seems to be part and parcel of research perfor-
mance, and “inequality has been, and will always be, an intrinsic feature of science” 
(Xie, 2014: 809). In Poland, as elsewhere, low productive scientists work in STEMM 
laboratories alongside highly productive scientists (Abramo et  al., 2013; Piro et  al., 
2016)—and in Poland, 10% of the most productive scientists (“research top perform-
ers”) have been shown to be producing as much as 50% of all publications (Kwiek, 
2018). The role of research stars, who are concentrated in the right tail of research pro-
ductivity distribution in every national science system, has endured over time (Agrawal 
et al., 2017: 1). The skewness of science has been the topic of numerous bibliometric 
publications (e.g., Albarrán et al., 2011; Carrasco & Ruiz-Castillo, 2014; Ruiz-Castillo 
& Costas, 2014). Recent studies include research on variously termed highly productive 
scientists: stars and superstars (Abramo et al., 2009a, 2009b; Agrawal et al., 2017; Agu-
inis & O’Boyle, 2014; Sidiropoulos et al., 2016; Yair et al., 2017), the best (O’Boyle & 
Aguinis, 2012), prolific professors (Piro et al., 2016), top researchers (Abramo et al., 
2013; Cortés et al., 2016), and the academic elite (Kwiek, 2016; Yin & Zhi, 2017).

Research Productivity

In most science systems, research productivity is one of the most important 
dimensions—although not the only one—determining the trajectory of academic 
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careers (Leišyte & Dee, 2012; Stephan, 2015). Research productivity has been 
widely studied from both single-nation and cross-national perspectives (see, e.g., 
Allison et  al., 1982; Fox, 1983;  Kwiek,  2018; Lee & Bozeman, 2005; Rams-
den, 1994; Shin & Cummings, 2010; Stephan & Levin, 1992; Teodorescu, 2000; 
Wanner et  al., 1981). In addition to publications, a successful academic career 
is determined by factors such as external research funding obtained, patterns of 
international collaboration, awards and honors, membership in associations and 
academies, physical mobility and international experience, professional networks, 
institutional placement (i.e., institutional and national affiliation), and luck (Car-
valho, 2017; Hermanowicz, 2012).

Career success is also determined by the internationalization of research, cita-
tions received, working time distribution, distribution of academic roles, and 
other factors. The main drivers behind productivity fall into two types: individual 
and environmental (encompassing both institutions, in the form of, e.g., “work 
climate,” as shown by Fox & Mohapatra, 2007, and entire national science sys-
tems, in the form of, e.g., national academic promotion and recognition systems, 
as shown by Leišyte & Dee, 2012).

Within the most general, traditional tripartite division of academic tasks into 
teaching, research, and service, it is extremely difficult to compare researchers’ 
achievements in the first and third areas, mainly because of data limitations. In 
contrast, it is relatively more simple, though not without controversies, to com-
pare achievements in the area of research through publications, which are usually 
indexed in global databases and their citations. Because publication and citation 
databases (despite their limitations and biases, as widely discussed in the litera-
ture; see Baas et al., 2020; Sugimoto & Larivière, 2018) have metadata of pub-
lications spanning for decades, it is possible to analyze individual productivity 
(calculated as the number of publications of a selected type per unit of time) and 
how it changes over time.

However, studying changes in productivity over time requires the data at the 
individual scientist level rather than at the publication level, which, in turn, 
requires massive processing of publication-oriented bibliometric data into a dif-
ferent unit of analysis: the individual scientist. In addition, studying productivity 
changes over time using publication numbers faces additional limitations because 
of the different pace of development of bibliometric databases, here depending on 
the discipline.

In some disciplines, the increasing number of publications may be because of 
increasing individual productivity, while in others, it may be because of the increas-
ing number of journals successively included in the database. Moreover, the aver-
age productivity increases at different rates in different disciplines with successive 
generations of scientists—scientists not only start publishing earlier on average, 
but they also publish more per year on average (Wang & Barabási, 2021). Higher 
productivity has also been associated with the growing role of multiauthored and 
internationally coauthored publications and the increasing average size of research 
teams (Adams, 2013; Wuchty et al., 2007), which, in turn, have been associated with 
increasing specialization in science and a stronger imperative to show the contribu-
tions of all, even minor, participants in research.
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Related Research and Research Gaps

Our longitudinal and classificatory approach to individual research productivity is 
especially promising for systems in which digital biographical and demographic 
data on scientists (from national registries) are available. In the literature, there are 
at least three somewhat structurally similar studies: These studies have focused on 
a national system (Abramo et al., 2017 on Italy), a single institution (Kelchtermans 
& Veugelers, 2013 on KU Leuven in Belgium), and a single discipline in a country 
(Turner & Mairesse, 2005 on French condensed-matter physicists). These authors 
explored persistence of research productivity over time, with varying periods of time 
and different datasets being examined (a national ministerial dataset, institutional 
personnel administrative data, and bibliometric data).

Abramo et al. (2017) studied the persistence of “stardom” of scientists (or their 
membership in the upper 10% in terms of productivity), focusing on the top perfor-
mance of all Italian professors over three 4-year periods (2001–2012). They identi-
fied the top performers in the first period (N = 2,883) and tracked them over time 
in the next two periods. The authors showed that about one-third of top performers 
retain their stardom for three consecutive periods, and about half retain it for two 
periods (35% and 55%, respectively, with some disciplinary differentiation and with 
higher percentages for male scientists, Abramo et al., 2017: 793–794).

In their study of KU Leuven, Kelchtermans and Veugelers (2013) examined 
persistence of research productivity over time at an individual level using a panel 
dataset comprising the publications of 1,040 biomedical and exact scientists for the 
period 1992–2001. They examined how researchers switch between the three pro-
ductivity categories (top, medium, and low classes) over time and showed that pro-
ductivity categories are generally persistent over time. Next top performance was 
found to be positively affected by previous top performance.

Finally, for 497 French physicists in the periods of 1986–1991 and 1992–1997, 
Turner and Mairesse showed that 66% of the most productive researchers (defined 
as “quartile 1 scientists”) and 67% of the least productive researchers (defined as 
“quartile 4 scientists”) remained as such for the entire period 1986–1997, underlying 
a stability of the relative positions of the researchers in the distribution of publica-
tion counts over time.

Our approach is different in several respects: the direction of tracking scientists 
over time (retrospective tracking of individuals vs. forward tracking); the period 
covered (two career periods, assistant professorship and associate professorship, 
spanning up to 40 years); the construction of the sample (all internationally visible 
associate professors within a national system); and the methodology (analysis of 10 
decile-based productivity classes, from the top 10% to the bottom 10%; and the four 
approaches to productivity, including two journal prestige normalized). Finally, we 
have used logistic regression analysis to identify major predictors of membership in 
the top and bottom productivity classes. However, in very general terms, Abramo 
et  al.’s (2017) analysis of the “stardom” of scientists over time within a national 
population of scientists bears the most interesting similarities with our analysis of 
the mobility between top productivity classes and bottom productivity classes over 
time as individuals move up the academic ladder; Kelchtermans and Veugelers 
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(2013) and Turner and Mairesse (2005) used different methodological approaches 
that are not directly comparable to ours. Specifically, none of the above approaches 
examined the top-to-bottom and bottom-to-top (rather than merely top-to-top and 
bottom-to-bottom) mobilities between productivity classes.

The literature shows several important gaps which we intend to fill: first, the vast 
majority of productivity literature is based on cross-sectional (mostly survey-based) 
rather than longitudinal datasets. Second, those few longitudinal studies are focused 
on top-to-top mobility in productivity which does not reflect patterns in a plethora 
of individual careers in which scientists move up or down in their (field-normal-
ized) productivity; from an individual perspective, extremely rare bottom-to-top 
mobility is as important as much more frequent top-to-top mobility from an insti-
tutional perspective. Third, the literature has not shown persistence in productivity 
over time in a more granular manner (e.g., all productivity deciles can be studied, 
with the majority of mobility to the top deciles coming from the neighboring deciles 
and with no mobility coming from the bottom deciles); more general mobility pat-
terns – such as scientists moving between productivity quartiles – hide behind them 
more nuanced patterns for which a more detailed approach is needed. A focus on the 
mobility of the top 25% of scientists reveals different patterns than a focus on the top 
10%. Additionally, with our micro-level data, we are able to go down to individuals 
with their IDs, with their unique publishing and collaboration profiles and their idio-
syncratic career, promotion, and tenure details. Fourth, research has not explored the 
issue of the impact of different counting methods on the scale of mobility observed; 
specifically, the role of the vertical hierarchical structure of the academic journal 
system (and the role of differentiated and citation-based, measurable journal pres-
tige) has not been taken into account. Different counting methods play an extremely 
powerful role in those science systems – as in Poland – in which grant allocation, 
promotions, and tenure decisions are strictly publication-related. Standard produc-
tivity (with no journal prestige-normalization) seems powerless when applied to 
real-life productivity in which publications in some outlets – officially defined by the 
ministry of science and unofficially recognized by the scientific community – matter 
for individuals and institutions and publications in other outlets do not matter at all. 
Finally, current econometric models used in longitudinal studies do not employ the 
registry-based biographical data so that, for example, the promotion speed classes 
and promotion age classes cannot be used in explaining high productivity in the way 
both are used in our research.

We have previously examined the persistence of productivity classes in the top 
levels of Polish academia (i.e., among full professors) from a lifetime perspective 
using a different methodology (Kwiek & Roszka, 2024). For a sample of 2,326 full 
professors from 14 STEMM disciplines, we have previously observed several con-
sistent productivity patterns. Using the 20/60/20 classification (as opposed to the 
current more fine-grained approach: 10 productivity deciles) into top performers, 
middle performers, and bottom performers, we analyzed current full professors ret-
rospectively. We have shown that, for the sample of current full professors, half of 
the highly productive assistant professors in the past continued to become highly 
productive associate professors, while half of the highly productive associate pro-
fessors continued to become highly productive full professors (52.6% and 50.8%, 
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respectively). In logistic regression models, there were two powerful predictors of 
membership in the top productivity class for full professors: first, being highly pro-
ductive as assistant professors and, second, being highly productive as associate pro-
fessors earlier in their careers.

Dataset, Sample, and Methodology

Dataset

For the present research, two major data sources are combined: national and interna-
tional. The national dataset is the “Polish Science Observatory” dataset, which has 
been created and is maintained by the present authors. The international dataset is 
Scopus raw publication and citation data for 1973–2021 for all Polish scientists and 
scholars who are active in performing research during the period. The “Observa-
tory” database has been created by merging a national biographical and administra-
tive register of all Polish scientists and scholars (N = 99,935) with the Scopus biblio-
metric database (2009–2018, metadata on N = 380,000 publications of authors with 
Polish affiliations). The Observatory includes relevant data such as gender, date of 
birth, dates of academic promotions (doctoral degree, postdoctoral degree, profes-
sorship title, if applicable), present institutional affiliations, and disciplines in which 
degrees have been obtained.

The official national register and the 2009–2018 Scopus publication and cita-
tion database have been merged using probabilistic and deterministic methods (see 
Kwiek & Roszka, 2021: 4–6). The Observatory database has been subsequently 
enriched with publication metadata for all scientists and scholars with Polish affili-
ations for the past half century collected from Scopus and obtained through a 
multiyear collaborative agreement with the International Center for the Studies of 
Research (ICSR) Lab, a cloud-computing platform provided by Elsevier for research 
purposes (N = 935,167 articles from 1973–2021).

Sample

Our sample (N = 4,165 scientists with  Nart = 71,841 articles) includes scientists cur-
rently employed full time in higher education institutions at the rank of associate 
professors and who have both doctoral and postdoctoral (habilitation) degrees and 
are working in one of the five STEMM fields of science (composed of 12 STEMM 
disciplines; their list is provided in Table 1).

Our sample is about one-third female scientists and two-thirds male scientists 
(37.3% and 62.7%, respectively), generally reflecting the gender structure of the Pol-
ish academic profession in STEMM fields of science at the rank of assistant and 
associate professors. As elsewhere, the share of female scientists in Poland is the 
highest for lower ranks and the lowest for higher ranks, reaching 28.34% of women 
working at the rank of full professors for all STEMM and non-STEMM disciplines 
combined (GUS, 2023: Table 1/42).
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Almost two-thirds of associate professors in our sample are aged 40–54 (61.8%), 
and both male and female associate professors are scattered across the three age 
groups, with only less than one-tenth aged under 40 (7.2%). The Kernel density 
plot in Fig. 1 indicates that the current age distribution of associate professors by 
gender differs, especially for older age groups. Specifically, the share of older age 
group associate professors is higher for men than women, which may reflect a higher 
inflow of women to STEMM disciplines 30 years ago and earlier. One in three sci-
entists (29.8%) come from research-intensive institutions defined as IDUB institu-
tions, that is, the participants in the first Polish national excellence initiative (funded 
with an additional 1 billion USD for 2020–2026). The age distribution of scientists 
by fields of study is only slightly differentiated, as the Kernel density plots indicate: 
Although in two fields younger age groups dominate (e.g., NATURAL and LIFE), 
in MATH, scientists are distributed in a much flatter manner, with ENGI having 
larger shares of older scientists.

Methodology

Unit of Analysis: Individual Scientists Rather than Individual Publications

Individual scientists with unambiguously defined biographical and publication-
related attributes are the unit of analysis. Scientists have individual identification 

Table 1  Structure of the sample of all Polish internationally visible associate professors by gender, age 
group, and STEMM academic field (N = 4,165) (frequencies and percentages)

Twelve Scopus ASJC disciplines (All Science Journal Classification) from STEMM have been clustered 
into five fields of science. The fields of science included are the following: ENGI (Engineering, com-
posed of Engineering and Materials Science); LIFE (Life Sciences, composed of Agricultural and Bio-
logical Sciences; and Biochemistry, Genetics, and Molecular Biology); MATH (Mathematics, composed 
of Mathematics and Computer Science); MED (Medicine, composed of Medical Sciences); and NATU-
RAL (Natural Sciences, composed of Chemical Engineering, Chemistry, Physics and Astronomy, Earth 
and Planetary Sciences, and Environmental Science)

Total Female scientists Male scientists

n col % n col % row % n col % row %

Age groups Total 4165 100.0 1553 100.0 37.3 2612 100.0 62.7
39 and less 301 7.2 92 5.9 30.6 209 8.0 69.4
40–54 2575 61.8 1036 66.7 40.2 1539 58.9 59.8
55 and more 1289 30.9 425 27.4 33.0 864 33.1 67.0

IDUB IDUB 1240 29.8 354 22.8 28.5 886 33.9 71.5
Rest 2925 70.2 1199 77.2 41.0 1726 66.1 59.0

Field ENGI 959 23.0 184 11.8 19.2 775 29.7 80.8
LIFE 897 21.5 485 31.2 54.1 412 15.8 45.9
MATH 400 9.6 76 4.9 19.0 324 12.4 81.0
MED 630 15.1 335 21.6 53.2 295 11.3 46.8
NATURAL 1279 30.7 473 30.5 37.0 806 30.9 63.0
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numbers (IDs), so their career-related biographical data can be derived from a 
national registry of scientists. The focus is on the individual academic careers of 
research producers developing over time, in this case on changing productivity 
classes while moving up the academic ladder, rather than on the research products 
(i.e., publications) themselves.

Constructing Individual Publication Portfolios

For each scientist, a unique individual publication portfolio is constructed. The port-
folio includes all Scopus-derived metadata on their publications. Specifically, pub-
lication metadata are journal metadata (e.g., Scopus CiteScore percentile rank) and 
publication metadata (e.g., year of publication, number of coauthors and their affili-
ations, citation numbers). Each publication is linked to the dates in individual bio-
graphical history; that is, they are linked to two career steps: assistant professorship 
and associate professorship, which is clearly defined as the period between obtaining 
a doctoral degree and a habilitation degree and the period following the conferral of 
a habilitation degree, respectively. The date of the first publication (any type) in the 
Scopus database allows for the construction of publication-derived academic age, 
a proxy of academic experience, which has been used in logistic regression mod-
els (we analyzed the correlation between biological age and academic age in Poland 
in  Kwiek & Roszka, 2022).

Constructing Individual Biographical Histories

For each scientist, apart from a unique individual publication portfolio, an individ-
ual biographical history is also constructed, here with the relevant dates: the date of 
birth (which allows us to infer biological age at the beginning of both career stages: 
assistant professorship and associate professorship), the date of obtaining a doctoral 

Fig. 1  Distribution of biologi-
cal age: Kernel density plots. 
A. associate professors in five 
STEMM academic fields com-
bined by gender. B. associate 
professors by STEMM academic 
field (N = 4,165)
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degree, and the date of obtaining a postdoctoral (or habilitation) degree. All scien-
tists in our sample are associate professors—but also all of them have been assistant 
professors earlier in their careers. The first stage of their academic career started 
when they were awarded their doctoral degrees and the second stage when they were 
awarded their habilitation degree. For both degrees, we have full administrative data, 
including the date of degree conferral, dissertation title, employing institution and 
city, defense institution and city, academic discipline, and academic field. The data, 
which come from a manually curated national registry of scientists, can be treated as 
fully reliable.

For the purposes of international comparability, we use holding a doctoral degree 
as a proxy of assistant professorship and holding a postdoctoral degree as a proxy 
of associate professorship. Assistant professorships are tenure-track positions, and 
tenure is granted to associate professors (upon obtaining the habilitation degree), 
with long-term job contracts and job stability for the vast majority of academics. 
Associate professorships offer higher salaries and greater participation in university 
self-governance.

Longitudinal Approach to Studying Academic Careers

For our analyses, we have chosen all current internationally visible associate profes-
sors (i.e., with at least one journal article indexed in the Scopus database), and we 
look back at their professional careers: We examine their current publishing behav-
ior in a four-year period of 2018–2021 and their past publishing behavior when they 
have been assistant professors in four-year equivalents in the past.

In traditional longitudinal research designs, the same individuals are followed 
over time with selected points in time to enable comparative research (Menard, 
2002; Singer & Willett, 2003). In following academic careers, a longitudinal design 
has not been used for technical and cost-related reasons; however, cohort-based 
approaches with bibliometric data have been recently used (see, e.g., Huang et al., 
2020; Milojevic et  al., 2018; Wang & Barabási, 2021). Our combination of indi-
vidual biographical histories (professional life data) with individual publication 
portfolios (publication and citation data) allows us to produce a retrospective view 
in which a sizable group of scientists is traced back for several decades in terms 
of their publishing behavior. This longitudinal approach opens new possibilities for 
studying academic careers over time.

The application of four major dimensions to examine biographical and bibliomet-
ric data becomes possible: gender, age, field of science, and, most importantly, time. 
Instead of time-limited snapshot views, using a series of cross-sectional accounts, 
longitudinal analyses that can focus on the change of the scientific workforce over 
time by various dimensions (e.g., research productivity) is possible.

Defining Gender, Biological Age, Academic Age, and Fields of Science

In our sample, all scientists have unambiguously defined gender (a binary approach 
used in the national registry: male or female) and year of birth. Hence, their 
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biological age at any point in their professional careers is easy to calculate. Their 
academic age—or the number of years since the first Scopus-indexed publication 
(any type) used in the logistic regression models—has been collected using an appli-
cation programming interface (API) protocol.

We use individual publication portfolios (all Scopus-indexed publications life-
time) to determine the dominant discipline: the modal value of ASJC (All Science 
Journal Classification) disciplines used in Scopus for each scientist. We link all pub-
lications (journal articles and chapters in conference proceedings only; henceforth 
referred to as articles) in the portfolios to ASJC disciplines, and if there are two or 
more values with the same high occurrence in the portfolio, the discipline is ran-
domly selected from among them. We then cluster 12 disciplines into five fields of 
science to have higher representation of men and women scientists and to avoid low 
numbers of observations in some disciplines.

Measuring Individual Publishing Productivity

We measure productivity in the four-year reference period of 2018–2021 (termed 
“current productivity of associate professors”) and in earlier periods of their assis-
tant professorship (termed “past productivity of associate professors when they were 
assistant professors”) by using publication data (journal articles) from individual 
publication portfolios. We need exact dates from the national registry to determine 
when current associate professors were working as assistant professors, so we have 
allocated publications from the 2018–2021 reference period and from the assistant 
professorship period, which have varying lengths, for each individual scientist. Four-
year productivity is used in both cases.

Journal Prestige–Normalized Approach to Publishing Productivity

We find it reasonable to take an approach to productivity change over time in 
which we use productivity classes within disciplines (see Costas & Bordons, 
2005, 2007) rather than publication numbers. Our journal prestige–normal-
ized approach to productivity locates scientific articles within a highly stratified 
global structure of journals by taking into account the fact that those articles 
published in high-prestige journals require, on average, more scholarly effort 
than articles published in low-prestige journals. The prestige of a journal (here: 
as expressed as percentile ranks in the Scopus database) is an important element 
of individual productivity, especially in systems—as in the Polish case (Antono-
wicz et al., 2021)—in which both the quantity and quality of articles captured by 
a proxy of journal prestige count toward academic promotion. The basic rule of 
Polish research assessment exercises termed institutional research evaluations in 
the past two decades is as follows: “Academic journals are not equal”: papers in 
different journals are given different numbers of points (in the range of 20–200).

Therefore, having individual publication portfolios for each scientist in our 
sample, we use four approaches to productivity: two journal prestige normal-
ized and two non-normalized. An especially interesting approach is journal 
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prestige–normalized approach to productivity, which we have developed over the 
past few years and in which articles are linked to the Scopus journals in which 
they were published (see Kwiek & Roszka, 2023; Kwiek & Szymula, 2024a). 
All Scopus journals (N = 46,702 in 2024) have their distinct locations in the 
Scopus CiteScore percentile ranks, in the range of 0–99, with more prestigious 
journals generally located in the 90–99 percentile ranks within their disciplines.

While in our non-normalized approach the value of an article in calculat-
ing productivity is 1 (using a full counting methodology) (see Waltman & van 
Eck, 2019), in our prestige-normalized approach, the value will be normalized 
to journal percentile ranks. In practice, our fine-grained approach applies the 
idea that the difference between journal prestige, as measured by Scopus, can 
be better captured by an exponential function rather than a linear function. The 
exponential function we apply is a mathematical function denoted by y =  x2.5 (as 
opposed to a linear function denoted by y = x, where x is Scopus CiteScore per-
centile rank). We have experimented with several exponential functions, and the 
exponent 2.5 (contrasted with 1.5, 2 and 3) seems to well capture our intentions: 
It increases the value of articles in highly ranked journals, especially in the 95th 
to 99th CiteScore percentile ranks, at the expense of the value of articles in bot-
tom-ranked journals, especially below the 50th CiteScore percentile rank (see 
the formula in Electronic Supplementary Material).

Linking articles to their location in a highly stratified system of academic 
journals using an exponential function rather than a linear one highlights the 
idea that, on average, publications in highly ranked journals require much more 
scholarly effort and are significantly more time-consuming to prepare, revise, 
and resubmit. This is especially true because these journals have much more 
rigorous peer review processes and more demanding reviewers compared with 
lower-ranked journals. Highly ranked journals tend to be far more selective, 
with acceptance rates below 10%, than their lower-ranked counterparts.

Full Counting Vs. Fractional Counting Approaches to Publishing Productivity

Our sample includes STEMM scientists only where collaborative publications are 
the rule and solo research the exception (Olechnicka et al., 2019; Wagner, 2018). In 
the full counting methods, equal full credits go to all coauthors; in fractional count-
ing methods, credits are divided by the number of coauthors (our sample does not 
include articles with more than 100 coauthors which are found mostly in subdis-
ciplines of physics and astronomy; see Waltman & van Eck, 2019). Consequently, 
the four combinations of counting and journal prestige–normalization methods have 
been considered in examining productivity—two full counting methods and two 
fractional counting methods—leading to four productivity types being used in the 
present research: (1) Productivity 1 (prestige normalized, full counting), (2) Produc-
tivity 2 (prestige normalized, fractional counting), (3) Productivity 3 (non-normal-
ized, full counting), and (4) Productivity 4 (non-normalized, fractional counting).

Productivity distribution by productivity type (Productivities 1 through 4), career 
stage (assistant professorship period, associate professorship period), and field of 
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science is shown in Fig. 2: The steepest distribution for every field occurs for both 
prestige-normalized approaches to productivity and the most flat for non-normal-
ized, full counting approaches.

Allocating Scientists to Productivity Classes

A methodologically critical element of the present research is the allocation of scien-
tists to the 10 (decile-based) productivity classes. First, separately within each field 
of science, all current associate professors are ranked according to their four-year 
productivity in the 2018–2021 reference period. There are four ranking procedures 
because there are four productivity types. The upper 10% of scientists within each 
field of science (the productivity decile 10 according to Productivities 1 through 
4) are classified as the top productivity class, and the lowest 10% (the productivity 
decile 1) as the bottom productivity class, cut-off points permitting. There are 419 

Fig. 2  Kernel density plots, productivity distribution by productivity type (Productivities 1 through 4), 
career stage (assistant professorship period, associate professorship period) and field of science. Top 
panel (All fields of science combined; ENGI); Middle Panel (LIFE; MATH), and Bottom Panel (MED; 
NATURAL). Right-tails cut at 30 articles (N = 4,165)
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scientists in the top productivity class and 412 scientists in the bottom productivity 
class (413 in Productivity 4, see Table 3).

One approach to top and bottom performance classes is to follow the data (e.g., 
using productivity brackets) and cluster individuals above the minimum threshold 
(top classes) and below a minimum threshold (bottom classes); the approach we use 
better fits the comparative nature of our study, especially in the modeling section in 
which predictors changing the odds of membership in top and bottom classes can 
be juxtaposed. We have also tested an approach in which jumps (and drops) in pro-
ductivity percentiles that are defined individually between the two career stages are 
examined, with success being high jumps. However, the idea of top performers and 
bottom performers would need to be replaced by that of (top) risers and (top) drop-
pers; as a result, the productivity decile approach has been found to be more fruitful.

Decile productivity classes are merely statistical devices to deal with continu-
ous, highly skewed productivity distribution (Fig.  2), and they do not refer to the 
lives of scientists; there are different roads to high productivity and different rea-
sons to have low productivity (see Wang & Barabási, 2021: 13–15 on Shockley’s 
model; Bornmann, 2024 on the Anna Karenina principle). Publishing productivity is 
a single dimension of research performance that also includes such features as indi-
vidual citation impact and citation impact per publication, publications in the top 
10% journals, top 10% cited publications, research grants awarded and their prestige, 
keynote speeches given at major conferences, doctoral students supervised, and so 
forth. Publishing productivity is a single aspect of research activities that, in turn, is 
a single aspect of wider university-based academic activities that traditionally also 
include teaching and service.

We have studied in detail the data in which the current decile-based classification 
is founded: For each field, we have examined the cut-off points between deciles of 
productivity, from bottom to top (Table  2, Productivity 1 only). An analysis per-
formed separately for all fields of science and the two career stages shows powerful 
differences in cut-off points within fields between scientists in the career stages of 
assistant professorship and associate professorships for both cut-off points for decile 
1 and decile 10. For instance, for the cut-off points between productivity decile 9 
and decile 10, the differences are in the range of 4–6 times (from on average 4.73 
in MATH to on average 5.98 in ENGI with 5.33 for all fields combined), imply-
ing that associate professors publish much more and in much more highly ranked 
journals. We have also examined productivity distribution (visualized using Kernel 
density plots) by productivity type and career stage; as expected, the distribution for 
the two prestige-normalized productivity types are much steeper than for the two 
non-normalized productivity types; and in all fields combined, the distribution is 
much steeper for the assistant professorship than for associate professorship period 
(Fig. 2).

Next, again separately within each field of science and separately by the four pro-
ductivity types, all current associate professors have been ranked according to their 
average four-year productivity when they were assistant professors. The examined 
period differs because there are different lengths of working at the rank of assistant 
professorship; however, the rankings are based on productivity in a four-year equiva-
lent period.
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Results

Mobility Patterns Between Productivity Classes

Our focus is on the mobility between productivity classes (especially between top 
and bottom classes and the classes closest to them: productivity deciles 8, 9, and 10 
at the top; and productivity deciles 1, 2, and 3 at the bottom). Assistant professors 
from the top and bottom productivity classes can change their productivity classes 
while being associate professors, moving to top, bottom, or any other productivity 
decile. Specifically, we analyze the following mobility types by field of science and 
productivity type:

(1) Top-to-top mobility (assistant professors belonging to the top productivity class 
continue to belong to the top productivity class as associate professors: mobility 
from productivity decile 10 to decile 10);

Table 3  How the current top-performing (productivity decile 10) associate professors (Left panel) and 
the current bottom-performing (productivity decile 1) associate professors (Right panel) are distributed 
by productivity percentiles (range: 0–100) when they were assistant professors. Associate professors, 
initial (as assistant professors) percentile distribution statistics, Productivity 1: full counting prestige-
normalized, by academic field, gender, type of institutional research intensity, academic age group, and 
biological age group (N = 4,165)

Current top-performing 
(top 10% productivity) associ-
ate professors

Current bottom-performing 
(bottom 10% productivity) 
associate professors

N Mean Std
dev

Median N Mean Std
dev

Median

Total N = 419 78.6 22.2 87.9 N = 412 26.1 23.2 18.3
Field ENGI N = 96 78.5 23.4 88.2 N = 95 33.0 24.8 29.6

LIFE N = 90 76.3 23.3 84.7 N = 89 23.3 22.0 17.2
MATH N = 41 77.3 21.9 86.3 N = 39 21.2 20.7 13.6
MED N = 64 78.4 21.0 86.6 N = 62 22.7 22.1 15.5
NATURAL N = 128 80.8 21.2 89.8 N = 127 25.9 23.2 18.0

Gender Female scientists N = 140 78.5 21.8 88.5 N = 1`33 28.0 24.8 18.7
Male scientists N = 279 78.6 22.4 87.6 N = 279 25.1 22.4 18.1

Institutional 
research

intensity

IDUB N = 161 81.2 21.7 91.3 N = 91 29.3 24.7 21.2
Rest N = 258 76.9 22.4 85.2 N = 321 25.1 22.7 18.0

Academic age 
groups

Beginning N = 6 78.5 16.2 80.7 N = 7 40.1 21.5 44.6
Early N = 201 89.0 14.2 93.7 N = 128 31.8 26.5 30.0
Middle N = 198 69.2 24.0 74.5 N = 195 25.1 23.1 16.5
Late N = 14 60.9 23.2 55.4 N = 82 18.0 13.3 16.2

Biological age 
groups

39 and less N = 104 92.7 10.9 96.9 N = 5 72.9 14.3 68.6
40–54 N = 289 76.2 21.9 84.3 N = 148 39.3 25.1 42.8
55 and more N = 26 48.7 20.3 42.2 N = 259 17.6 16.7 12.0
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(2) Bottom-to-bottom mobility (assistant professors belonging to the bottom pro-
ductivity class continue to belong to the bottom productivity class as associate 
professors: mobility from productivity decile 1 to decile 1);

(3) Extreme downward and extreme upward mobility: top-to-bottom mobility and 
bottom-to-top mobility (assistant professors belonging to the top productivity 
class move down to the bottom productivity class as associate professors; and, 
analogously, assistant professors belonging to the bottom productivity class 
move up to the top productivity class as associate professors; mobility from 
productivity decile 10 to decile 1; mobility from productivity decile 1 to decile 
10).

Apart from the above basic mobility types that include only productivity deciles 
10 and 1, we will also discuss briefly a wider mobility between the upper productiv-
ity deciles (8–10) and the lower productivity deciles (1–3), here taking into consid-
eration the role of cut-off points in publication numbers (Table 2). There are near-hit 
and near-miss observations in our datasets: Scientists just above the decile 1 cut-off 
point and just below the decile 10 cut-off point; hence, a more general view which 
includes neighboring deciles seems useful.

Our general question is how the current top-performing (productivity decile 
10, N = 419) associate professors are distributed by productivity percentile ranks 
(range: 0–100) when they were assistant professors in the past. In addition, anal-
ogously, we are interested in how the current bottom-performing (productivity 
decile 1, N = 412) associate professors are distributed by productivity percentile 
ranks (range: 0–100) when they were assistant professors in the past.

We have examined these questions using distributions by field of science, gen-
der, institutional research intensity, and two age-related variables (academic age 
group and biological age group). As could be expected, the median value of the 
original percentile rank (as assistant professor) for the current top performers 
is very close to the target percentile rank (as associate professor): The median 
is 87.9 percentile for top performers and 18.3 percentile for bottom performers 
(Table 3), with limited field-related variability for top performers (from 84.7 in 
LIFE to 89.8 in NATURAL) and considerable field-related variability for bot-
tom performers (from 13.6 in MATH to 29.6 in ENGI). Gender differences are 
marginal: Currently top-performing (and bottom-performing) men and women as 
associate professors on average come from similar initial productivity percentile 
ranks as assistant professors.

An instructive way to visualize an answer to the questions of how current top-
performing (and bottom-performing) associate professors are located in terms of 
productivity deciles when they were assistant professors is to use Kernel den-
sity plots (Fig. 3). Kernel density plots use kernel density estimation to create a 
smoothed, continuous curve that approximates the underlying data distribution. 
These estimations work better than histograms in displaying the shape of a dis-
tribution because their shape is not affected by the number of bins used or by 
dramatic differences between them; they can be flexibly used to compare distribu-
tions of two or more datasets. For all fields combined, the vast majority of current 
top performers belonged to productivity deciles 8 through 10 in the past, and the 
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vast majority of bottom performers belonged to productivity deciles 1 through 
3 in the past. However, the highest concentration of top-performing associate 
professors is observed for NATURAL and of bottom-performing scientists for 
MATH. The highest concentration of top performers is observed for the youngest 
age group (scientists aged 39 and less, Fig. 3).

With our dataset, we can analyze the mobility between productivity deciles 
(at the level of individuals) in great detail. Table 4 (Top panel) shows the decile 
origins of scientists currently located in productivity decile 10: initial productiv-
ity deciles (as assistant professors) in the past of current top-performing associate 
professors across the various academic fields.

Fig. 3  How the current top-performing (Left, N = 419, productivity decile 10) and bottom-performing 
(Right, N = 412, productivity decile 1) associate professors are distributed by productivity percentiles 
(range: 0–100) when they were assistant professors. A. all fields combined, B. by field of science. C. by 
biological age groups. Kernel density plots, initial percentile distribution, Productivity 1: full counting, 
prestige-normalized
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Almost half of the current highest-performing associate professors come from 
productivity decile 10 during their time as assistant professors (46.5%): They con-
tinue to be in the same productivity decile (17.7% come from decile 9 and 8.6% 
from decile 8). In total, three-fourths of them belonged to productivity deciles 
8–10 in the past (72.8%). Almost none belonged to the lowest three productivity 
deciles, with no scientist experiencing the extreme upward decile 1 to decile 10 
mobility and just one scientist (located in NATURAL) experiencing the upward 
decile 2 to decile 10 mobility (we have full lifetime biographical and publishing 
profiles of every scientist, including this exception).

Considering the academic fields, half of the high-performing associate professors 
(50.0%) were also high-performing assistant professors in NATURAL and 47.9% in 
ENGI. In ENGI, 74.0% of top performers come from the highest three deciles, and 
none comes from the lowest three. In LIFE and MATH, these figures are 67.8% and 
70.7%, 2.2%, and 0%, respectively.

Table  4 (Bottom panel) shows the decile origins of scientists currently located 
in productivity decile 1: initial productivity deciles (as assistant professors) in the 
past of current bottom-performing associate professors across the various academic 
fields. The emergent patterns are mirror-like but less intense than those found for top 
performers: About two-thirds (63.9%) of bottom performers come from the three 
lowest productivity deciles (deciles 1, 2 and 3), including one-third from the lowest 
decile (33.3%). Only 5.5% (23 individual scientists) come from the highest three 
deciles, and of these individuals, again, we have full lifetime biographical and pub-
lishing data.

We discuss mobility between productivity classes based on the four productivity 
types first (1) for all fields of science combined and, second, by (2) zooming in on 
cross-field differences: horizontal top-to-top mobility, horizontal bottom-to-bottom 
mobility, and extreme upward and downward mobility (bottom-to-top mobility, top-
to-bottom mobility). Finally, the results section presents (3) the logistic regression 
analysis, which examines the predictors changing the odds of entering the classes of 
top productivity and bottom productivity associate professors.

Mobility between Productivity Classes by Productivity Type: All Fields of Science 
Combined

The Sankey diagram (Fig. 4) provides a guiding visualization to better understand 
what is meant by scientists’ mobility across productivity classes. The Sankey dia-
gram shows flows of scientists between the productivity deciles of assistant profes-
sors (left: top and bottom) and associate professors (right: top and bottom): Spe-
cifically, horizontal top-to-top and bottom-to-bottom mobility, as well as downward 
top-to-bottom and upward bottom-to-top mobility, are of interest to us here.

The example in Fig.  4 shows the mobility of scientists from all fields of sci-
ence combined and uses Productivity 1 type (prestige-normalized, full counting 
approach). The left column shows the distribution of assistant professors within top 
and bottom productivity classes (totaling 100% in each class), and the right column 
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shows the distribution of associate professors within the same two productivity 
classes.

The horizontal top-to-top and bottom-to-bottom mobility is represented by thick 
flows. Extreme vertical top-to-bottom mobility is rare and is represented as a thin 
downward flow; bottom-to-top flow is not shown because it does not occur at all: 
Only 1.2% of top productivity assistant professors (five scientists) land in the class 
of bottom productivity associate professors—and no bottom productivity assistant 
professor (zero scientists) lands in the class of top productivity associate professors.

From an aggregated view of all fields of science combined (Table  5 and Sup-
plementary Table  1), the mobility patterns are unambiguous: About half (46.5%) 
of scientists allocated to the top productivity classes (Decile 10) stay in the same 
top class in their academic career, and about one-third (33.3%) of scientists allo-
cated to the bottom productivity classes (Decile 1) stay in the same bottom class (for 
Productivity 1). There is an interesting locking-in mechanism in academic careers 
that deserves further scholarly attention—which is especially interesting because 
advancement in academic careers (in the specific Polish case) is related only to pub-
lications and publishing productivity, with a marginal role played by teaching and 
service university missions.

Analyzing the current biological age distribution of associate professors (Fig. 1) 
and their current distribution by age groups (Table 1), we can conclude that STEMM 
scientists are stuck in productivity classes for years, sometimes decades: Almost 
two-thirds of associate professors are aged 55 and older (30.9%); they became assis-
tant professors when they were, on average, aged about 28–32. In a system in which 
full professorship is the crowning achievement of one’s academic career and is avail-
able to few only, associate professors are scattered across all age groups. Conse-
quently, our analyses span several decades of the academic careers of current associ-
ate professors.

Fig. 4  Example: Scientists’ 
mobility between productivity 
classes in the two stages of an 
academic career. Productivity 1: 
prestige-normalized, full count-
ing approach. All five STEMM 
fields of science combined, 
current associate professors. All 
observations ranked and clus-
tered into productivity deciles, 
top (upper 10%, productivity 
decile 10, N = 419) and bottom 
(bottom 10%, productivity 
decile 1, N = 412) productivity 
classes only (percentages, top 
class and bottom class, 100% 
each)
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Importantly, in our approach, we do not refer to publication numbers because pro-
ductivity in Poland has been on the rise across the board over the past decade. We 
rank all current associate professors in terms of productivity (“target academic posi-
tion” in productivity mobility in Table 5) and allocate them to productivity classes, 
separately for each field of science and separately by each productivity type. Sub-
sequently, we rank associate professors retrospectively—that is, when they were 
assistant professors—in terms of productivity at that time, as measured for a four-
year period (“initial academic position” in productivity mobility in Table  5). We 
examine 4,165 individual academic trajectories across five STEMM fields using full 
biographical, administrative, and bibliometric data at the micro-level of individual 
scientists.

What are the chances for extreme upward (decile 1 to decile 10) or downward 
(decile 10 to decile 1) mobility between productivity classes? Can scientists radi-
cally change their publishing behavior (compared with their peers in fields of 
science)?

Table 5  Mobility between top (decile 10) and bottom (decile 1) productivity classes while moving up 
from the assistant professorship stage to associate professorship stage by four productivity types, fields of 
science combined (frequencies and percentages) (N = 4,165)

Assistant 
professorship 
stage
(transition 
from)

Assistant 
professorship 
class
(initial 
academic 
position)

Associate 
professorship 
stage
(transition to)

Associate 
professorship 
class
(target 
academic 
position)

Number of 
scientists in 
transition

Number of 
scientists in 
productivity 
class

%

Productivity 1: Prestige-normalized full counting
Asst Prof Bottom Assoc Prof Bottom 137 412 33.3
Asst Prof Bottom Assoc Prof Top 0 412 0
Asst Prof Top Assoc Prof Bottom 5 419 1.2
Asst Prof Top Assoc Prof Top 195 419 46.5
Productivity 2: Prestige-normalized fractional counting
Asst Prof Bottom Assoc Prof Bottom 122 412 29.6
Asst Prof Bottom Assoc Prof Top 0 412 0
Asst Prof Top Assoc Prof Bottom 5 419 1.2
Asst Prof Top Assoc Prof Top 168 419 40.1
Productivity 3: Non-normalized full counting
Asst Prof Bottom Assoc Prof Bottom 135 412 32.8
Asst Prof Bottom Assoc Prof Top 1 412 0.2
Asst Prof Top Assoc Prof Bottom 5 419 1.2
Asst Prof Top Assoc Prof Top 191 419 45.6
Productivity 4: Non-normalized fractional counting
Asst Prof Bottom Assoc Prof Bottom 111 413 26.9
Asst Prof Bottom Assoc Prof Top 1 413 0.2
Asst Prof Top Assoc Prof Bottom 4 419 1
Asst Prof Top Assoc Prof Top 175 419 41.8
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Our data (Table 5) clearly show that, in prestige-normalized counting approaches, 
there are no chances for extreme upward mobility: None of the current 412 top per-
formers in the second career stage was a bottom performer in their first career stage 
(0%). In addition, a traditional non-normalized full counting approach shows merely 
one scientist (0.24%) experiencing this mobility. The chances for extreme downward 
mobility are slightly higher but still marginal—around 1% (5 scientists out of 419 
or 1.19% in three productivity types and four scientists or 0.95% in Productivity 4).

Zooming on Cross‑Field Differences

The aggregated picture of all fields of science combined hides a much more nuanced 
picture of individual STEMM fields, with their distinct mobility patterns between 
productivity classes. Focusing on Productivity 1 and the horizontal top-to-top (pro-
ductivity decile 10 to decile 10) mobility first, for all fields, 40–50% of assistant 
professors continue in top productivity classes as associate professors (Table  6). 
The highest share is observed for natural sciences (NATURAL), with as much as 
50.0%, followed by engineering (ENGI) with 47.9%. The lowest share is observed 
for life sciences (LIFE), where 42.2% of assistant professors continue in the same 
top productivity class. High cross-field differentiation is also observed for top-to-top 
mobility between productivity classes by the other three productivity types (see Sup-
plementary Table 1).

Similarly, we have analyzed horizontal bottom-to-bottom mobility between 
productivity classes by field of science and productivity type. For all fields of sci-
ence combined, the bottom-to-bottom mobility is experienced by one-third (33.3%) 
of current bottom-productive associate professors, and it is the highest when Pro-
ductivity 1 is used and the lowest when Productivity 4 is used (33.3% and 26.9%, 
respectively). However, the differentiation by field of science within and across pro-
ductivity types is considerably higher than in the case of top-to-top mobility (Sup-
plementary Table  2). In ENGI, using Productivity 1, the percentage of scientists 
from the bottom productivity class as assistant professors staying in the same bottom 
productivity class as associate professors reaches 22.4%; in MED, it is twice as high 
(40.3%). Overall, between 20 and 40% of bottom performers in the first stage of 
their careers continue to be bottom performers in the second stage.

Transitions from the top to the bottom decile are extremely rare, with the highest 
chances being 2.1% in engineering and 1.6% in natural sciences. Overall, only 1.2% 
of assistant professors moved downwards from the top to the bottom decile. No such 
transitions occur in MATH and MED (0%).

Scientists representing bottom-to-top mobility, which is of great interest in pro-
ductivity studies, are nonexistent across all fields of science in prestige-normalized 
productivity types (0%, Table 7). The only exception is a single scientist in life sci-
ences (1.1% in LIFE) in each of the two non-normalized productivity types, hence 
totaling two scientists. By way of example of the power of microdata in our Labora-
tory of Polish Science, these two outliers are a male and a female scientists working 
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in the discipline of AGRI in non-research-intensive institutions, aged 44 and 48, 
with doctoral degrees both aged 30 and habilitation degrees aged 41 and 39; both 
publish in relatively lower-ranked Scopus journals (median journal prestige percen-
tile rank, lifetime: 32 and 25); their average team sizes are relatively high for AGRI 
(5.21 and 4.77 authors per paper, lifetime); their total research output lifetime is 14 
and 40 articles; and they jumped from the 6th and 4th percentile in productivity dis-
tribution to the 90th percentile, respectively. We can compute a dozen other individ-
ual-level data about their academic careers (as well as about any other’s), including 
their individual field-normalized citation-based impact, the citation-based impact of 
each of their papers, their promotion speed and promotion age compared with peers 
in AGRI from the same age cohort, publishing patterns and collaboration patterns 
changing over time, and so forth.

Model Approach: Logistic Regression

First, we discuss four models—one for each productivity type—by estimating the 
odds ratios of membership in the top productivity class for associate professors (top 
10%); and second, we do the same for membership in the bottom productivity class 
(bottom 10%). Each model evaluates the influence of several variables on the likeli-
hood of being a top-productive (or a bottom-productive) associate professor.

Logistic Regression: Top Productivity Associate Professors

Four logistic regression models have been constructed for four productivity types, 
where success is entering the class of the 10% most productive associate professors. 
The selection of variables is guided by the literature on productivity (e.g., Lee & 
Bozeman, 2005; Ramsden, 1994; Shin & Cummings, 2010; Teodorescu, 2000) and 
high productivity (e.g., Abramo et al., 2009a, 2009b; Fox & Nikivincze, 2021) as 
well as by data availability. An analysis of the presence of collinearity among the 
independent variables is performed. For this purpose, inverse correlation matrices 
are estimated, and the values from their main diagonals are used (see Supplementary 
Table 4).

One predictor proves to be the most important in the four models used: associate 
professors’ membership in the class of top productivity assistant professors earlier in 
their careers (we track exactly the same scientists changing productivity classes over 
time, variable: Top_assistant_class, Table  8). In Model 1, this increases the odds 
by nearly sixfold (Exp(B) = 5.978, 95% CI: 4.493–7.954). Similar strong effects are 
seen in the other models, with odds ratios of 6.735 in Model 3, 3.677 in Model 2, 
and 6.305 in Model 4. In all four cases, the significance level is lower than 0.001.

Thus, the multidimensional analysis strongly confirms the results of the two-
dimensional analysis presented in previous sections: Given the joint effect of all var-
iables, the impact of membership in top productivity class in the past as an assistant 
professor (all other things being equal) is by far the strongest predictor of the current 
membership in top productivity class.
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The models confirm our exploratory intuitions about changing productivity 
classes between the two career stages from a longitudinal perspective: When sci-
entists are currently top productive at the stage of associate professorship, they 
tend to have been top productive at the earlier stage of assistant professorship. 
No matter how productivity is measured—full counting or fractional counting,  
prestige-normalized or non-normalized approaches—the patterns emerging from 
our regression analysis are very similar.

Prior membership in the promotion speed class of “fast” associate profes-
sors also proves to be statistically significant in all models. Fast associate pro-
fessors are the scientists belonging to the 20% of scientists having the shortest 
time between their doctorate and habilitation, that is, between the start of their 
career as assistant professors and start of their career as associate professors. 
Belonging to a class of fast associate professors increases the probability of suc-
cess: The speed at which one transitions to the associate professor level (vari-
able: Fast_associate_class) increases the chances. In Model 1, the odds increase 
by 47.1% on average (Exp(B) = 1.471, 95% CI: 1.015–2.13; all other things being 
equal). This effect is even stronger in Model 4, where the odds more than dou-
ble (Exp(B) = 2.128, 95% CI: 1.479–3.062; see Electronic Supplementary Mate-
rial on promotion age and promotion speed classes). Rapid progression in an 
academic career appears to be a significant factor in achieving high productivity. 
Membership in the class of scientists receiving a doctorate at a young age (the top 
20% of the distribution, variable: Young_assistant_class) is not statistically sig-
nificant. In addition, institutional research intensity is not statistically significant.

Interestingly, gender appears in two models only, both times when using frac-
tional counting. In Model 2, being male increases the odds of being a top-pro-
ductive associate professor by 49% (Exp(B) = 1.49, 95% CI: 1.165–1.905) and in 
Model 4 by 33% (Exp(B) = 1.33, 95% CI: 1.042–1.697).

In three out of the four models (Models 1–3), biological age significantly and 
negatively affects the probability of success. In Model 1, each additional year of 
biological age decreases the odds by approximately 11% (Exp(B) = 0.888, 95% 
CI: 0.85–0.929). Similarly, in Models 2 and 3, the odds decrease by around 
8–12% per year of age. This suggests that younger associate professors are more 
likely to be highly productive. Academic age, or the number of years since the 
first publication indexed in Scopus, in contrast, positively affects the odds in 
Models 1 and 2, both of which are prestige normalized. In Model 1, each addi-
tional year increases the odds by 8% (Exp(B) = 1.079, 95% CI: 1.049–1.11) and in 
Model 2 by 5.8% (Exp(B) = 1.058, 95% CI: 1.029–1.088).

Importantly, the direction and, to a large extent, strength of predictors gener-
ally do not depend on the model, that is, on the approach to productivity selected. 
Regardless of how productivity is measured, the statistically significant predictors 
are the same. By far, the strongest predictor of membership in the top productiv-
ity class of associate professors is prior membership in the top productivity class 
as assistant professor, which is consistent with our two-dimensional analyses of 
horizontal top-to-top mobility between productivity classes.
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Logistic Regression: Bottom Productivity Associate Professors

Subsequently, four logistic regression models have been built for four productivity 
types, where success is entering the class of 10% bottom-productive associate pro-
fessors. Prior research on productivity and the productivity of Polish scientists in 
particular (e.g., Antonowicz et al., 2021; Kwiek, 2018) is instrumental in construct-
ing the models. We discuss the results of standardized residuals statistics and the 
inverted correlation matrix main diagonal in the Electronic Supplementary Material.

The strongest predictor increasing the probability of membership in the class of 
bottom-productive associate professors is earlier membership in the class of bot-
tom-productive assistant professors (Table 9). Being a bottom-productive assistant 
professor (the bottom 10% of the distribution, variable: Bottom_assistant_class) is 
a strong predictor across all models. In Model 1, this increases the odds by approxi-
mately 2.5 times (Exp(B) = 2.508, 95% CI: 1.882–3.342). Similar effects are seen in 
the other models, with odds ratios of 2.036 in Model 2, 3.566 in Model 3, and 2.929 
in Model 4. Again, logistic regression analysis supports our two-dimensional results, 
hence showing the role of high horizontal bottom-to-bottom mobility, although not 
as strongly as in the case of top-productive associate professors.

Both biological and academic age are statistically significant predictors but in 
different directions. Biological age shows a consistent positive relationship with 
being in the bottom productivity decile across all models. For example, in Model 
1, each additional year of biological age increases the odds by approximately 15.5% 
(Exp(B) = 1.155, 95% CI: 1.123–1.189). Similar effects can be observed in Models 
2, 3, and 4, indicating that older associate professors are more likely to be less pro-
ductive. Academic age, in contrast, negatively affects the odds in Models 1 and 2. In 
Model 1, each additional year decreases the odds by 4.1% (Exp(B) = 0.959, 95% CI: 
0.942–0.976) and in Model 2 by 4% (Exp(B) = 0.960, 95% CI: 0.944–0.977).

The age at which one becomes an associate professor (variable: Associate_age) 
also shows some influence, with a negative effect in Models 1 and 2. For instance, in 
Model 1, each additional year decreases the odds by 5.9% (Exp(B) = 0.941, 95% CI: 
0.903–0.981). This suggests that becoming an associate professor at a younger age 
slightly reduces the likelihood of low productivity.

The low speed at which one transitions to the associate professor level (varia-
ble: Slow_associate_class) shows a positive relationship with being in the bottom 
productivity decile in Model 4, where the odds increase by 51.1% (Exp(B) = 1.511, 
95% CI: 1.048–2.178). This indicates that a slow transition might be associated with 
lower productivity.

Overall, the logistic regression models highlight several significant predictors for 
becoming a bottom-productive associate professor. Being a bottom-productive assis-
tant professor is the most consistent and robust predictor, followed by biological age. 
Academic age and the promotion age for associate professorship also play important 
roles, with longer academic careers and younger promotion age reducing the odds of 
low productivity. Contrary to models for top-productive associate professors, gen-
der was found to be non-significant. In addition, institutional research intensity is 
statistically significant in two models, increasing the odds by 37.9% in Model 1 and 
30.7% in Model 3.
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Generally, the predictors in those models constructed for bottom productivity 
associate professors are weaker than the predictors in the models constructed for 
top productivity associate professors. The directions of impact are usually opposite, 
which is especially visible in the case of age-related predictors. In both cases, the 
most powerful predictor in all models, that is, regardless of the productivity type 
used, is prior membership in the top productivity (or bottom productivity) class at 
the stage of assistant professorship.

Discussion and Conclusion

The strength of the present research comes from its unique national datasets and 
solid methodological approach. First, this research has strong empirical foundations: 
The publishing productivity of all Polish internationally visible associate professors 
in 12 STEMM fields of science clustered into five fields of science (N = 4,165) are 
studied, and their full individual publication portfolios and full individual biographi-
cal histories are examined. Biographical and demographic data from a national 
registry of scientists are combined with publication metadata, including all Polish 
articles published in the past half a century and indexed in Scopus (1973–2021, 
N = 935,167).

Second, in terms of methodology, the individual scientist, rather than the indi-
vidual publication, has been used as a unit of analysis; productivity based on the 
four major types is used to assess the extent to which measurement methods can 
impact the patterns found; and decile-based productivity classes rather than publi-
cation numbers are used. Specifically, journal prestige–normalized productivity (in 
which articles’ locations in the global stratified journal system are applied) is con-
trasted with non-normalized productivity (both in full counting and fractional count-
ing types).

Finally, a longitudinal research design has been used, in which publishing pro-
ductivity over the years and decades, as linked to two subsequent career stages of 
assistant professorship and associate professorship, can be traced. Individuals are 
followed over time with full promotion, demographic, and (Scopus-indexed) publi-
cation data.

Our dataset includes publishing patterns of associate professors spanning across 
decades because, in the Polish system, there are no externally imposed time require-
ments for promotions: The associate professors in our sample work for decades in 
the system, and about one-third of them (30.9%) are aged 55 or older.

Our longitudinal analyses have focused on the mobility patterns between produc-
tivity classes for assistant and associate professors. In our leading productivity type 
(prestige-normalized, full counting), our results show that slightly less than a half 
(46.5%) of top productivity scientists (the top 10% of the distribution, productivity 
decile 10) continue as top productivity scientists; about one-third (33.3%) of bot-
tom productivity scientists (the bottom 10% of the distribution productivity, decile 
1) continue as bottom productivity scientists.

Extreme interclass mobility (downward top-to-bottom mobility, upward bottom-
to-top mobility) has emerged in our research as a marginal phenomenon: 0–1.2% of 
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all current associate professors, depending on productivity type, experience either 
type of this mobility in their career histories. They are extremely rare scholarly spe-
cies: In a sample of 4,165 scientists, there are no scientists (0%) moving from bot-
tom to top deciles in prestige-normalized productivity types (and merely two scien-
tists in both non-normalized ones) and just five scientists moving from top to bottom 
deciles. Top-performing associate professors were predominantly top-performing 
assistant professors in the past (median productivity percentiles: 87.9), and bottom-
performing associate professors were predominantly bottom-performing assistant 
professors in the past (median productivity percentiles: 18.3).

Both for scientists and decision makers in science policy at various levels, the 
message is challenging: Our analyses show that that radical changing publishing 
productivity levels (upward or downward: here the mobility between the top 10% 
and bottom 10% of the productivity distribution) in STEMM actually almost never 
happens in practice. In other words, some scientists tend to be highly productive for 
years and decades, and others—their colleagues in institutions and their peers within 
fields of science —tend to be bottom productive for years. There is a zero probabil-
ity that scientists will be radically more and a marginal probability that they will be 
radically less productive when they move up the academic ladder.

Importantly, the cross-disciplinary differentiation is notable: In the natural sci-
ences, the percentage of scientists experiencing top-to-top mobility reaches 50%. In 
addition, the aggregated picture at the level of fields of science of 33.3% of scientists 
from the bottom productivity class as assistant professors staying in the same bottom 
productivity class as associate professors hides a much more differentiated picture. 
Depending on the field, between 30 and 60% of bottom-productive assistant pro-
fessors continue their careers as bottom-productive associate professors. Compared 
with the persistence of “stardom” examined by Abramo et al. (2017) for Italy, the 
shares of Polish top performers mainatining their high productivity in both career 
stages are higher (46.5.0% for all STEMM fields combined) than the shares of top 
scientists maintaining their high productivity or “stardom” in Italy over a period of 
12  years (35%). Productivity stratification seems deeper and more long-lasting in 
Poland than in Italy, possibly because of decades of severe research underfunding.

Logistic regression analysis powerfully supports our two-dimensional results. In the 
case of the odds ratio estimates of the membership in the top productivity class of 
associate professors, one predictor proves to be the most important in the four mod-
els: the membership in the class of top-productive assistant professors earlier in their 
careers. This prior membership is statistically significant in all models to a similarly 
high degree, increasing the odds 4–6 times, depending on productivity type. Prior 
membership in the promotion speed class of fast associate professors is also statis-
tically significant in all models. Membership increases the chances of success by 
50%–130%, depending on the model. In the case of the odds ratio estimates of the 
membership in the bottom productivity class of associate professors, the strongest pre-
dictor is prior membership in the class of bottom-productive assistant professors. The 
probability of success increases by 150–300%, depending on the productivity type.

From a broader perspective, our study shows that the traditional notion of 
“strong” and “weak” individual track record in research—here linked only to pub-
lishing productivity and not to field-weighted citation impact, generation of research 
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funding, or other dimensions of academic careers—makes sense when evaluating 
individual scientists.

Scientists with a very weak past track record in research emerge from our 
research as having marginal chances of becoming scientists with a very strong future 
track record across all STEMM fields. Traditionally, the science edifice has been 
constructed so that highly productive scientists—those with significant impact on 
disciplinary scientific communities—are highly recognized.

The takeaway from the present research for academic careers is that early achieve-
ments in science—when viewed through a proxy of early top publishing productiv-
ity—significantly influence achievements at a later stage, that is, late top publishing 
productivity. If the assistant professorship period is strong in publications, the asso-
ciate professorship period tends to be strong too; analogously, if this period is weak 
in publications, associate professorship also tends to be weak.

Our micro-level data powerfully show that scientists tend to be stuck in their 
publishing productivity classes within their fields of science for years and decades: 
Top performers tend to be top performers, and bottom performers tend to be bottom 
performers; the former becoming the latter or the latter becoming the former are 
extremely rare phenomena. As a result, going to the individual productivity limits 
early on in academic careers tends to pay off later on in careers; later productivity is 
strongly related to earlier productivity.

However, one point needs to be remembered: in this study, our approach to pro-
ductivity is relative rather than nominal. Productivity of individuals clustered into 
classes is compared to productivity of other individuals, also clustered into classes. 
While change is central to our analysis, it is the change between classes (i.e., rela-
tive) rather than the change in publication numbers (i.e., nominal). Our interest is 
not in increasing (or decreasing) productivity, in terms of publication numbers, 
with age (or as scientists become older and move up the academic ladder). In this 
sense, we can only speculate whether or not our top performers are actually increas-
ing their productivity over time, following the idea of intensification of academic 
publishing (Hermanowicz & Scheitle, 2023); our focus is on changing productivity 
classes – which is a different issue, unrelated to traditional discussions about “age 
and scientific achievement” (e.g., Wang and Barabàsi, 2021).

The uncovered transition patterns are understandable in light of traditional produc-
tivity theories (especially sacred spark theory, e.g., Allison & Stewart, 1974; Cole & 
Cole, 1973; Fox, 1983; and cumulative advantage theory, e.g., David, 1994; DiPrete 
& Eirich, 2006; Merton, 1968). However, the strength of the patterns found in our 
research across different fields and different productivity types is somehow unexpected; 
what is especially surprising is the very high persistence of membership in top produc-
tivity classes across academic careers and the zero (and sometimes marginal) chance of 
radically changing productivity classes while moving up the academic ladder.

Hence, our research shows a long-term character of careers in science, with 
publishing productivity (and possibly other working patterns) in an apprentice-
ship period of assistant professorship heavily influencing productivity in a more 
independent period of associate professorship. We can assume that working pat-
terns, which are often based on the role models of academic supervisors, the 
strength of teaching or research orientation, weekly working time distribution 
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(including time spent on research), writing habits, and collaboration habits, take 
years to form and tend to stay with individuals in their careers. Science takes a lot 
of time (weekly, monthly, yearly); additionally, the academic careers of current 
highly productive scientists take time to form: Years or decades of previous high 
productivity are needed, as our data show.

Our research has its limitations. We do not analyze the productivity classes 
of all assistant professors because our focus is on associate professors publish-
ing in the most recent four-year period for which publication data are available 
(2018–2021) and, retrospectively, when they were assistant professors. This 
means that the longitudinal comparison over time cannot be conducted for those 
assistant professors who have left the national science system. Our study also 
does not pertain to those scientists who never earned their postdoctoral degrees 
(they are not in our sample).

Our dataset does not include environmental factors, which bear heavily on indi-
vidual productivity—we are not able to study the “work climate” (Fox & Mohapa-
tra, 2007), which is reported to be especially important for women in the STEMM 
disciplines (Branch, 2016), save for a single variable of research-intensive institu-
tions selected for a national excellence program. In a similar manner, we do not have 
the data about academic attitudes and behaviors, which are routinely reported in aca-
demic profession surveys, or the data on work–life balance, household and parenting 
obligations, which have been extensively used in previous survey-based productiv-
ity studies (e.g., Kwiek, 2019).

It also needs to be kept in mind that, at an individual level, generally, although 
productivity can always be higher in the higher education and science system, it can-
not be much lower or zero (meaning nonpublishers, nonperformers) for a long time 
because these unsuccessful scientists tend to leave the Polish higher education sys-
tem. Therefore, our study of current associate professors does not include failures 
in science because unsuccessful scientists are not present in the national registry. 
From this perspective, all current associate professors in our sample are successes 
in science (“success bias”), and it is merely a statistical approach that allocates them 
to the top and bottom productivity classes. No matter how highly productive the sci-
entists in the system are, the system can always be divided into 10 decile-based pro-
ductivity classes, and there will always be bottom productivity classes (productivity 
decile 1) in each field of science (cut-off points permitting). Finally, we use inter-
nationally understandable notions of assistant and associate professorships, even 
though, in fact, we use the two Polish academic degrees (doctorate and habilitation).

Our study is confined to a single national science system. The generalizability of 
the results depends on the similarities and dissimilarities with other systems. Sci-
ence systems have differently constructed career ladders, and they differ in their 
internal competitiveness, incentive structures, teaching and research mix, funding 
opportunities, the attractiveness of academic careers, and so forth. However, our 
ongoing research (Kwiek & Szymula, 2024b) involves a large-scale cross-national 
study of mobility between productivity classes in 38 OECD countries, with 320,564 
late-career scientists tracked over time.
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