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Abstract 
 
The present study focuses on persistence in research productivity over the course of an individual’s entire 
scientific career. We track “late-career” scientists—scientists with at least 25 years of publishing 
experience (N=320,564)—in 16 STEMM (science, technology, engineering, mathematics, and medicine) 
and social science disciplines from 38 OECD countries for up to five decades. Our OECD sample includes 
79.42% of late-career scientists globally. We examine the details of their mobility patterns as early-career, 
mid-career, and late-career scientists between decile-based productivity classes, from the bottom 10% to 
top 10% of the productivity distribution. Methodologically, we turn a large-scale bibliometric dataset 
(Scopus raw data) into a comprehensive, longitudinal data source for research on careers in science. The 
global science system is highly immobile: half of global top performers continue their careers as top 
performers and one-third of global bottom performers as bottom performers. Jumpers-Up and Droppers-
Down are extremely rare in science. The chances of moving radically up or down in productivity classes 
are marginal (1% or less). Our regression analyses show that productivity classes are highly path 
dependent: there is a single most important predictor of being a top performer, which is being a top 
performer at an earlier career stage. 
 
 

Introduction 
 
The focus of the present study is persistence in top and bottom individual research productivity from a 
lifetime perspective—that is, over the course of an entire scientific career. We are tracking “late-career” 
scientists (N=320,564) from 38 OECD countries for up to five decades to examine their mobility patterns 
between decile-based productivity classes, from the bottom 10% to top 10%. 
 
We turn a large-scale publication and citation bibliometric dataset (Scopus raw data) into a global, 
comprehensive, multidimensional, and longitudinal data source for research on careers in science; this 
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practice follows several previous global studies on gender and self-citations (King et al., 2017), women in 
science (Huang et al., 2020; Larivière et al., 2013; Sugimoto & Larivière, 2023; West et al. 2013), global 
citation inequality (Nielsen & Andersen, 2021), continuing publishing core of global science (Ioannidis et 
al., 2018), collaboration with top scientists (Li et al., 2019), the nature of international collaboration 
(Wagner, 2018), or academic careers viewed from the perspective of science of science (Wang & 
Barabàsi, 2021). So far, however, individual publishing productivity has not been examined globally from 
a longitudinal perspective. Most importantly, we move from individual publications (and their properties) 
to individual scientists (and their characteristics) as a unit of analysis. We construct individual lifetime 
publication and citation histories for every late-career scientist in our sample, restricting our research to 16 
STEMM (science, technology, engineering, mathematics, and medicine) and social science disciplines. In 
our context, “late-career” scientists are defined as scientists with at least 25 years of publishing 
experience. 
 
Because our study is of a longitudinal nature, we use a global bibliometric dataset to study scientific 
careers and how they change over time (Menard, 2002; Rowland, 2014; Ruspini, 1999): The same 
individuals are tracked over the multiple decades of their publishing careers. In global academic career 
research, ever more datasets are currently tested (e.g., integrated datasets with administrative and 
biographical, commercial and noncommercial, national and global data; see, e.g., King et al., 2017; 
Larivière et al., 2013; Nielsen, 2021). In the present research, we test the usefulness of publication and 
citation metadata for examining the global science profession from a longitudinal perspective; these 
metadata are digital traces left by scientists throughout their professional lives (or as long as they keep 
publishing in academic journals). Digital traces (Liu et al., 2023; Salganik, 2018) allow for the emergence 
of a whole new multidisciplinary field of science of science (Clauset et al., 2017; Wang & Barabási, 2021; 
Zeng et al., 2017), hence allowing science career studies to radically move beyond traditional small-scale 
surveys and interviews (Hermanowicz, 2012; Leišytė & Dee, 2012). The digital traces left by scientists in 
global publication and citation datasets allow academic career researchers to change their focus from 
single national science systems to a global science system (Huang et al., 2020; King et al., 2017; Ni et al., 
2021). 
 
The present study explores mobility between the 10 individual productivity classes (constructed according 
to the 10 decile-based classes) throughout long academic careers, here encompassing early-, mid-, and 
late-career periods. Our initial hypotheses, which are based on research productivity literature (Allison et 
al., 1982; Fox, 1983; Turner & Mairesse, 2005), especially high research productivity literature focused on 
“top performers” and “prolific” scientists (Abramo et al., 2009; Aguinis & O’Boyle, 2014; Fox & 
Nikivincze, 2021; Kwiek, 2016; Li et al., 2019) are, first, that scientists are generally locked in within 
their productivity classes for years (Kelchtermans & Veugelers, 2013; Turner & Mairesse, 2005); second, 
we argue that the elite strata of highly productive scientists often continue their entire careers as being 
highly productive (Allison & Stewart, 1974; David, 1994); and, finally, we argue that radical changes in 
productivity classes, especially upward, although popular in narratives about academic careers, are highly 
improbable in practice because of the cumulative nature of the advantages and disadvantages in careers, as 
shown over the decades in the traditional sociology of science (Cole & Cole, 1973; DiPrete & Eirich, 
2006; Merton, 1973).  
 
The current study follows the research lines explored in the field of science of science, which provides 
data-driven insights into the inner workings of science (Wang & Barabási, 2021). A shift toward new 
digitalized data sources allows for the exploration of new questions about scientists (Liu et al., 2023). In 
this case, traditional cross-sectional studies can be complemented with longitudinal studies (Lutter & 
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Schröder, 2016; Ma et al., 2020) in which individuals are tracked over time. The career histories of 
thousands of individual scientists can change the way we think about science and scientists because of the 
unprecedented level of detail that can be obtained. As a result, the various aspects of academic careers 
have recently been examined both globally (gender disparities in careers Larivière et al., 2013; Huang et 
al., 2020; continuous publishing Ioannidis et al., 2014; collaboration with top scientists Li et al., 2019; 
gendered nature of authorship Ni et al., 2021; women in science Sugimoto & Larivière, 2023) and 
nationally, especially in the US (e.g., productivity across career stages Way et al., 2017; long-term effects 
on careers of initial setbacks Wang et al., 2019; careers in elite universities Zhang et al., 2022; credit 
distribution in academic publishing Ross et al., 2022) at a scale unthinkable in career studies before. 
  
Productivity Classes in Single-Nation Studies 
 
We have tested our initial hypotheses in a previous national-level strand of research under the general 
label of “once highly productive, forever highly productive” (Kwiek & Roszka, 2024a, 2024b). The 
patterns found about OECD scientists consistently supported our initial intuitions about immobility in the 
system based on our single-nation research: The majority of highly productive early-career scientists and 
mid-career scientists continued their careers as highly productive mid-career scientists and late-career 
scientists; radical upward and downward mobility was either at zero or at marginal levels. In the present 
research, we develop our methodological approach to study mobility between the productivity classes of 
scientists from 38 OECD countries that are often powerfully involved in international collaboration as 
part of the ongoing globalization of science (Kwiek, 2023; Marginson, 2022). We track 320,564 late-
career scientists from a wide variety of research systems, giving us the potential to test hypotheses about 
the scientific profession more generally. 
 
There are three small-scale longitudinal single-nation studies similar to ours. First, for 497 French 
physicists, Turner and Mairesse (2005) showed that 66% of the most productive researchers (defined as 
quartile 1 scientists) and 67% of the least productive researchers (defined as quartile 4 scientists) 
remained as such for the period 1986–1997, underlying a stability of the relative positions of the 
researchers in the distribution of publication counts over time. Second, in a study of a single Belgian 
university, Kelchtermans and Veugelers (2013) discussed top research productivity and its persistence 
over time by using a panel dataset comprising the publications of 1,040 biomedical and exact scientists 
for the period 1992–2001; they studied how researchers switch between productivity categories over 
time, showing strong support for an accumulative process. However, this places scientists with a low 
initial output at a disadvantage while giving highly productive scientists a greater advantage. Finally, 
Abramo et al. (2017) studied Italian scientists in three consecutive four-year periods of 2001–2012; they 
identified 2,883 top performers in the first period and followed them over time. About one-third of top 
performers retained their top ranking for three consecutive periods, and about half retained it for two 
periods (35% and 55%, respectively). 
 
Our research explores a different scale, scope, and methodology: We track a large number of late-career 
scientists from 38 OECD countries from all science sectors (including higher education); we examine 
productivity changes over a prolonged period of time (25–50 years) across all STEMM and selected 
social science disciplines; and we use a longitudinal and classificatory approach combined with two-
dimensional analyses and logistic regression models. 
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Persistence in High (and Low) Productivity 
 
Productive scientists are likely to be “even more productive in the future, while scientists who produce 
little original work are likely to decline further in their productivity” (Allison & Stewart, 1974: 596). 
Substantial predetermined differences among scientists may have a powerful impact on careers (Cole & 
Cole, 1973; Fox, 1983). An “initial success” may lead to increased productivity; in contrast, a “bad start” 
may lead to the scientist leaving science (Turner & Mairesse, 2005). In other words, “there are substantial, 
predetermined differences among scientists in their ability and motivation to do creative scientific 
research” (Allison & Stewart, 1974: 596). Some scientists are always very productive, and a differential 
distribution of talent affects inequality in productivity more than the recognition system in science 
(Stephan & Levin, 1992).  
 
As a result, productivity stratification in science leads to “persistent hierarchies of productivity”: “once 
scientists enter the current productivity elite, it is rare for them to exit from it in the next period; and the 
same holds true at the lower extreme of the productivity distribution” (David, 1994). Top performers tend 
to try hard not to disappoint their colleagues and themselves; bottom performers, in contrast, tend to lose 
confidence in their research capabilities. Previous top performance significantly and positively affects 
current top performance (Kelchtermans & Veugelers, 2013). 
 
We realize that productivity is a narrow measure of scientists’ success: What is much more important in 
the long term is scholarly impact. Citations tell more about individual academic success than publications 
and publishing patterns and intensity. However, the focus in the present paper is on changing productivity 
classes rather than changing impact classes (which would also be possible based on individual-level, field-
weighted citation impact (FWCI) of all articles published within specific career periods); in the current 
research, our reference to impact based on citations is twofold: through Scopus journal citation ranks 
(range: 0–100) in productivity computations and through the variable of FWCI 4y in regression models (or 
the impact of every publication within four-year windows). 
 
Research Questions  
 
At a global scale, we quantify the persistence in research productivity over an academic lifetime by 
following previous research (using analyses based on small-scale surveys and a limited number of 
interviews) across a span of decades (Allison, 1980; Allison et al., 1982; Cole & Cole, 1973; Merton, 
1973). Tracking the career trajectories of thousands of scientists, we seek otherwise invisible, global 
mobility patterns between research productivity classes (whenever we use the term “global,” we refer to 
38 OECD countries). Our sample of OECD late-career scientists includes 79.42%  of all late-career 
scientists globally (from all countries, N=403,653); and their research output (30,695,679 research 
articles) includes 83.03% of all research articles produced by this category of scientists globally 
(N=36,969,473). 
 
We have posed the following research questions regarding changing publishing productivity over the 
course of individuals’ academic careers: First, what is the scale of horizontal transitions (top to top, 
bottom to bottom) and radical vertical transitions (bottom to top, top to bottom) between global 
productivity classes? Second, what is the scale of jumping up (and dropping down) in science in terms of 
research productivity—radically changing productivity classes upward or downward globally? Third, what 
are the cross-disciplinary differences in mobility patterns between global productivity classes? Finally, 
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what are the predictors of belonging to the classes of highly productive and bottom productive scientists 
(the top 10%, the bottom 10%), and how do they differ between academic disciplines? 
 

Methods 
 
The data were collected from the Scopus bibliometric database and were obtained through a multiyear 
collaborative agreement with the International Center for the Study of Research (ICSR) Lab, a cloud 
computing platform provided for research purposes by Elsevier. Our final sample included all late-career 
scientists who were research active in 2023 (with at least 25 years of publishing experience) located in 
16 STEMM and social science disciplines and coming from 38 OECD countries (N=320,564 scientists 
with N=16,345,891 research articles; see the major steps in data preprocessing in Figure 1; the “authors” 
in our dataset were defined as having publications of any type and scientists as authors with articles in 
journals and conference proceedings only. For our calculations, we utilized the Scopus database dated 
March 29, 2024. Our sample (Supplementary Tables 1 and 2) included 12,585 social scientists (from 
BUS, ECON, and PSYCH) and 307,979 STEMM scientists, the latter comprising 95.76% of our sample. 
About a quarter of our sample included women scientists (26.34%), the number of which was slightly 
more in the social sciences than STEMM fields. The largest academic discipline represented in our 
sample was MED (40.89%), followed by BIO (14.29%) and PHYS (9.13%). The percentage of women 
in our sample was about one-third in three disciplines (the two largest: MED and BIO) and exceeded 
40% in only one (PSYCH: 41.44%). The three largest countries represented were the USA, Japan, and 
Italy, comprising about a half of all scientists in the sample. In terms of academic age, there are about 
20,000–25,000 scientists in the youngest cohorts and about 2,000–3,000 in the oldest cohorts, with the 
share of women decreasing with each subsequent cohort, from about one-third for the youngest cohort 
(25 years of academic experience: 32.77%) to 13–15% for the oldest cohorts. In practical terms, we are 
working with the census of a population with clearly defined inclusion criteria rather than with a sample 
of scientists – with methodological implications for testing for statistical significance (which are not 
needed in the present research). The probability that the observed relationships and differences occurred 
by pure chance are zero because we do not work with samples drawn from the population of late-career 
scientists but with their population. 
 
To achieve aggregate-level results, the ICSR Lab employed the Databricks environment, which 
facilitates the management and execution of cloud computing with Amazon EC2 services. The scripts 
for generating the results were developed using the PySparkSQL library. Runs were carried out using a 
cluster in standard mode with Databricks Runtime version 11.2 ML, Apache Spark technology version 
3.3.0, Scala 2.12, and an i3.2xlarge instance with 61 GB memory, eight cores, one to six workers for the 
worker type, and a c4.2xlarge instance with 15 GB memory and four cores for the driver type. The 
execution time took six hours, and this operation was initiated on June 25, 2024. We obtained the results 
in CSV format.  
 
The academic lives of all late-career scientists from 38 OECD countries that were research active in 2023 
were retrospectively divided into three stages: early-, mid-, and late-career stages. All late-career 
scientists, by definition, were initially both early-career scientists (in their publishing years 5–14) and 
mid-career scientists (in their publishing years 15–24). We analyzed their current five-year publishing 
behavior (2019–2023) and looked back into their past publishing behavior to examine how they may have 
changed their productivity classes. 
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Figure 1. Flowchart and major steps in data preprocessing: from all scientists in the Scopus database to 
late-career scientists in our sample.  
 
At each career stage, current late-career scientists showed their annual individual productivity. 
Consequently, their productivity was calculated for the recent five-year period and for two earlier periods: 
when they were early-career scientists and mid-career scientists. Our analyses are based on the idea of 
subsequent distributions of scientists into classes: Late-career scientists are first distributed by current 
productivity classes (separately within each of the 16 disciplines) and then, retrospectively, by past 
productivity classes in the two earlier career periods. 
 
Early-career scientists may retain or change their decile-based productivity classes while being mid-career 
scientists as mid-career scientists may do while being late-career scientists. In the present study, we 
tracked scientists for 25–50 years and compared their productivity with the productivity of their peers (the 
same academic career stage and the same discipline). 
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For each scientist in our sample, an individual publication and citation portfolio was constructed. The 
portfolio included Scopus-derived publication metadata and their various constructs that accompanied 
individual authors from their first publication in the dataset to the year 2023. Within the portfolios, all 
metadata and their specially computed constructs were linked to the three career periods (e.g., annual 
productivity), individual publications (e.g., field-weighted four-year citation impact), or the entire 
lifetime careers of scientists (e.g., gender, discipline, international collaboration rate, and median team 
size) (see Variables in Table 9).  
 
Our approach to individual research productivity is longitudinal (Menard, 2002; Rowland, 2014; 
Ruspini, 1999) and classificatory (or class based) (Costas & Bardons, 2007; Costas et al., 2010). First, 
we tracked the productivity of late-career scientists as individuals ever since they became early-career 
scientists, that is, five years after their first globally indexed publication. Second, we did not compare 
productivity changes over time (as individual scientific careers develop) in terms of changing 
publication numbers—we compared productivity in terms of the stable or changing membership in the 
productivity classes while scientists grow older and move up the professional ladder. Scientists can 
always be allocated to the top and bottom classes, regardless of actual publication numbers, cut-off 
points permitting, so that both terms could be used not to judge the level of productivity but rather 
classify it.  
 
We used a journal prestige–normalized, full counting method of calculating productivity. This approach 
refers to the quantity and quality of globally indexed publications at the level of individuals (as opposed to 
quantity only in non-normalized approaches). Prestige normalization refers to journal percentile ranks 
used in the Scopus database (CiteScore ranking, range: 1–99), and it highlights the difference in average 
scholarly efforts between preparing and revising publications in generally less selective and more selective 
journals, here with different peer review procedures and acceptance rates. Prestige normalization is 
determined by the number of citations received by the journal (43,092 journals in 2024) in the previous 
four years. In a prestige-normalized approach, the weight of publications depends on their location in a 
vertically stratified system of academic journals (for more on the role of journal stratification in academic 
careers, see Hammarfelt, 2017; Heckman & Moktan, 2018; Kwiek 2021; Lindahl, 2018; Shibayama & 
Baba, 2015).  
 
Our focus is on scientific careers rather than on publications. Therefore, the unit of analysis is individual 
scientists, with their unambiguously defined individual publication- and citation-related attributes (rather 
than publications, with their properties). A global publication-focused bibliometric dataset (raw Scopus 
dataset owned by Elsevier) was used to define individual attributes of all scientists in our sample. The 
productivity classes of individuals were traced over their lifetime—as early-, mid- and late-career 
scientists.  
 
In the present research, we have used a global bibliometric dataset to define scientists’ individual 
attributes. The determination of some attributes has already been described in detail in our previous 
research: gender determination (binary: male or female), discipline determination (using all cited 
references from all publications, lifetime), determining the country of affiliation (using a modal value of 
all affiliations in all publications, lifetime), determination of scientists’ nonoccasional status in global 
science (using a minimum output of 10 research articles), and determining academic age (using the 
distance in years between the first publication, of any type, and 2023; Kwiek & Szymula, 2023, 2024). 
Three other individual attributes were used in individual publication and citation portfolios (their 
construction is described in Table 9): international collaboration rate (lifetime), field-weighted four-year 
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citation impact (FWCI 4y), and median team size (lifetime). The distribution of the sample by academic 
age (i.e., publishing experience) is shown in Figure 2, with further details in Supplementary Table 2. 
 

 

 
 
Figure 2. Distribution of academic age: Kernel density plots. Late-career scientists, all academic 
disciplines combined (top panel) by gender. Late-career scientists by academic discipline (bottom panel) 
and gender (N = 320,564) 
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Results 
 
Changing Productivity Classes Over Academic Careers 
 
Our focus is on analyzing the mobility between productivity classes, particularly the transitions between the 
top and bottom classes and the adjacent classes: productivity deciles 8, 9, and 10 at the top and deciles 1, 2, 
and 3 at the bottom of the productivity distribution. We examine three stages of academic careers—early 
career, mid-career, and late career—and the transitions from early career to mid-career and from mid-career 
to late career. 
 
Early-career scientists in the top and bottom productivity classes can change their productivity classes as 
they progress to the mid-career stage, moving to any decile. Similarly, mid-career scientists in the top and 
bottom productivity classes can experience changes in their productivity levels as they transition to the late-
career stage, moving up, down, or staying in the same productivity decile. We want to understand how 
productivity can evolve over the course of an academic career and discuss the extent to which individuals 
move between different levels of productivity. 
 
We examine three primary types of mobility (across all academic disciplines and within specific 
disciplines): 
 
1. Top-to-top mobility: Early-career scientists who are in the highest productivity decile remain in the 
highest decile as they progress to the mid-career stage, and similarly, from the mid-career to late-career 
stages. This reflects consistency in high productivity from one career stage to the next (mobility from decile 
10 to decile 10). 
 
2. Bottom-to-bottom mobility: Early-career scientists in the lowest productivity decile stay in the lowest 
decile as they advance to the mid-career stage and, likewise, from the mid-career to late-career stages. This 
indicates a persistent low productivity level across career stages (mobility from decile 1 to decile 1). 
 
3. Extreme downward and extreme upward mobility (top-to-bottom mobility and bottom-to-top mobility): 
This includes both downward and upward mobility. Scientists who start in the top productivity decile in 
their early careers and who drop to the bottom decile by the mid- or late-career stage (top-to-bottom 
mobility); and scientists who begin in the lowest decile and rise to the highest by mid- or late-career stage 
(bottom-to-top mobility). This represents significant shifts in productivity, either from decile 10 to decile 1 
or from decile 1 to decile 10. 
 
In addition to examining the basic mobility between the highest (decile 10) and lowest (decile 1) 
productivity deciles, we will also explore a broader perspective of mobility that considers the transition 
between the upper deciles (8–10) and lower deciles (1–3). Some scientists are positioned just above the 
decile 1 threshold and others just below the decile 10 threshold (as illustrated in Table 1 for late-career 
scientists; Supplementary Tables 3 and 4 provide cut-off points for late-career scientists at the early- and 
mid-career stages). A more comprehensive approach that includes adjacent deciles (1–3 and 8–10) seems 
useful.  
 



 10 

Table 1. Cut-off points (publication numbers: articles and chapters in conference proceedings) for 
membership in the productivity deciles, late-career scientists at a late-career stage, by discipline (N = 
320,564) 
Discipline Min 1 2 3 4 5 6 7 8 9 Max 
AGRI 0.00 0.41 0.63 0.84 1.08 1.39 1.77 2.27 3.02 4.42 101.78 
BIO 0.00 0.51 0.72 0.90 1.12 1.40 1.74 2.19 2.91 4.26 61.31 
BUS 0.00 0.42 0.60 0.75 0.90 1.01 1.26 1.57 2.00 2.78 18.22 
CHEM 0.00 0.48 0.73 0.98 1.29 1.66 2.17 2.83 3.82 5.84 69.92 
COMP 0.00 0.36 0.58 0.75 0.92 1.16 1.46 1.83 2.39 3.59 74.89 
EARTH 0.00 0.50 0.73 0.95 1.23 1.57 1.94 2.49 3.32 4.89 81.94 
ECON 0.00 0.25 0.39 0.53 0.65 0.79 0.95 1.16 1.52 2.12 25.40 
ENG 0.00 0.33 0.55 0.76 0.96 1.25 1.61 2.10 2.89 4.51 56.65 
ENVIR 0.00 0.48 0.74 0.97 1.25 1.57 2.01 2.58 3.43 5.18 51.51 
IMMU 0.00 0.48 0.74 0.95 1.22 1.55 1.92 2.41 3.31 4.98 87.91 
MATER 0.00 0.45 0.72 0.99 1.32 1.74 2.30 3.05 4.18 6.52 57.61 
MATH 0.00 0.19 0.34 0.47 0.60 0.74 0.92 1.16 1.52 2.27 171.49 
MED 0.00 0.41 0.65 0.90 1.19 1.59 2.11 2.86 4.08 6.53 178.31 
NEURO 0.00 0.47 0.68 0.88 1.10 1.35 1.66 2.10 2.79 4.09 57.73 
PHYS 0.00 0.45 0.70 0.96 1.29 1.69 2.25 3.02 4.34 7.88 272.31 
PSYCH 0.00 0.39 0.61 0.80 1.03 1.34 1.70 2.19 2.88 4.26 87.52 
SOCIAL 0.00 0.25 0.39 0.53 0.65 0.79 0.95 1.16 1.52 2.12 18.22 
STEMM 0.00 0.19 0.34 0.47 0.60 0.74 0.92 1.16 1.52 2.27 51.51 
TOTAL 0.00 0.19 0.34 0.47 0.60 0.74 0.92 1.16 1.52 2.12 18.22 

 
Our general question is how top-performing (productivity decile 10, N=32,063) mid-career scientists were 
distributed by productivity percentile ranks (range: 0–100) when they were early-career scientists in the 
past and, analogously, how top-performing (productivity decile 10, N=32,063) late-career scientists were 
distributed by productivity percentile ranks when they were mid-career scientists. 
 
In addition, we are interested in how bottom-performing (productivity decile 1, N=32,063) mid-career 
scientists were distributed by productivity percentile ranks (range: 0–100) when they were early-career 
scientists in the past. In addition, analogously, how the current bottom-performing (productivity decile 1, 
N=32,075) late-career scientists were distributed by productivity percentile ranks when they were mid-
career scientists. In all cases studied, we retrospectively examine current late-career scientists (who make 
up our sample): when they were early-career scientists and when they were mid-career scientists. 
 
In the mobility from the early-career to mid-career stage, as could be expected, the median value of the 
original percentile rank (as early-career scientist) is very close to the target percentile rank (as mid-career 
scientist): The median is the 90th percentile for global top performers and the 15th percentile for global 
bottom performers (Table 2), with limited discipline-related variability for top performers (from 89th in 
COMP, ENG, and IMMU to 92nd in MATH) and slightly higher discipline-related variability for bottom 
performers (from 12th in PHYS to 17th in COMP and ECON). Differences in both the median and mean 
values between social science academic disciplines combined (SOCIAL) and STEMM disciplines 
combined are limited. 
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Table 2. How top performers at a mid-career stage (productivity decile 10) (Left panel) and bottom 
performers at a mid-career stage (productivity decile 1) (Right panel) were distributed by productivity 
percentiles (range: 0–100) when they were in their early-career stage. Top/bottom performers in their mid-
career stage, initial (as early-career stage) percentile distribution statistics by academic discipline (Ntop = 
32,063, Nbottom = 32,063) 
 
 Top performers at a mid-career stage – 

distribution at an early-career stage 
Bottom performers at a mid-career stage 

- distribution at an early-career stage 
Discipline N Mean Std 

dev 
Median N Mean Std 

dev 
Median 

AGRI 2,373 85.03 15.84 91 2,373 18.66 17.13 14 
BIO 4,582 82.95 18.69 90 4,582 21.05 19.58 15 
BUS 326 82.00 19.74 89.5 326 24.43 21.44 18 
CHEM 1,490 84.52 17.55 91 1,490 17.57 16.68 13 
COMP 765 80.80 20.73 89 765 23.12 20.07 17 
EARTH 1,437 85.01 16.27 91 1,437 18.32 17.48 13 
ECON 385 82.32 19.85 90 385 22.30 19.20 17 
ENG 1,282 82.40 18.84 89 1,282 20.85 19.02 15 
ENVIR 652 84.82 16.78 91 652 20.99 19.48 15.5 
IMMU 315 82.28 19.21 89 315 21.24 20.46 14 
MATER 584 83.26 17.91 90 584 17.89 16.18 14 
MATH 701 85.58 16.79 92 701 19.90 18.01 15 
MED 13,108 83.97 17.04 90 13,108 20.15 18.49 15 
NEURO 587 83.72 18.50 90 587 19.90 18.88 14 
PHYS 2,928 83.25 20.90 92 2,928 18.49 19.15 12 
PSYCH 548 83.60 18.35 91 548 18.79 17.74 13 
SOCIAL 1,259 82.79 19.17 90 1,259 21.32 19.14 17 
STEMM 30,804 83.78 17.77 90 30,804 19.88 18.53 15 
TOTAL 32,063 83.74 17.83 90 32,063 19.94 18.55 15 

 
Similarly, regarding the mobility from the mid-career to late-career stage, the median value of the original 
percentile rank (as mid-career scientist) for the current late-career top performers is very close to the 
target percentile rank (as late-career scientist): The median is the 90th percentile for top performers and 
the 19th percentile for bottom performers (Table 3), with limited discipline-related variability for top 
performers (from 89th in BUS to 92nd in CHEM) and slightly higher discipline-related variability for 
bottom performers (from 15th in PSYCH and EARTH to 21st in BIO and ECON). Again, the differences 
in both the median and mean values between social science academic disciplines (SOCIAL) and STEMM 
academic disciplines combined are limited. 
 
A useful way to visualize the distribution of current top-performing and bottom-performing late-career 
scientists across productivity deciles during their mid-career and early-career stages is presented through 
kernel density plots (Figures 3 and 4). These plots utilize kernel density estimation to generate a smooth, 
continuous curve that represents the underlying data distribution. Unlike histograms, kernel density plots 
are not influenced by the number of bins or significant differences between them, making them more 
effective in illustrating the shape of a distribution; they also allow for a more flexible comparison 
between multiple datasets. When considering all academic disciplines combined (TOTAL), the majority 
of top performers were previously in productivity deciles 8 through 10, while most bottom performers 
were previously in deciles 1 through 3. Notably, the highest concentration of top-performing (as well as 
bottom-performing) mid-career scientists can be found in PHYS and CHEM. 
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Table 3. How top performers in their late-career stage (productivity decile 10) (Left panel) and bottom 
performers in their late-career stage (productivity decile 1) (Right panel) were distributed by productivity 
percentiles (range: 0–100) when they were in their mid-career stage. Top/bottom performers in a late-
career stage, initial (as mid-career stage) percentile distribution statistics by academic discipline (Ntop = 
32,063, Nbottom = 32,075) 
 
 Top performers at a late-career stage - 

distribution at a mid-career stage 
Bottom performers at a late-career stage - 

distribution at a mid-career stage 
Discipline N Mean Std 

dev 
Median N Mean Std 

dev 
Median 

AGRI 2,373 84.34 17.98 91 2,373 21.90 19.08 17 
BIO 4,582 82.97 19.52 90 4,582 26.37 22.31 21 
BUS 326 80.33 21.99 89 326 25.52 20.82 20 
CHEM 1,490 85.20 17.92 92 1,490 21.92 19.39 16 
COMP 765 81.76 21.08 90 767 24.55 20.68 19 
EARTH 1,437 82.50 19.38 90 1,437 21.70 19.70 15 
ECON 385 80.38 22.31 90 385 25.44 20.76 21 
ENG 1,282 83.06 19.74 91 1,282 23.38 19.26 19 
ENVIR 652 83.58 19.25 91 652 24.69 20.37 19 
IMMU 315 82.78 19.81 90 319 24.12 22.07 17 
MATER 584 85.03 17.84 91 590 22.17 18.93 17 
MATH 701 84.21 19.00 91 701 22.07 19.02 18 
MED 13,108 83.01 19.61 90 13,108 24.50 21.09 19 
NEURO 587 84.53 18.35 91 587 24.55 21.75 18 
PHYS 2,928 83.28 21.94 92 2,928 22.37 20.84 16 
PSYCH 548 83.84 18.10 91 548 21.29 19.69 15 
SOCIAL 1,259 81.87 20.39 90 1,259 23.65 20.31 20 
STEMM 30,804 83.29 19.56 90 30,816 23.98 20.78 19 
TOTAL 32,063 83.23 19.60 90 32,075 23.96 20.76 19 
 
 
With our dataset, we can analyze the mobility between productivity deciles (at the level of individuals) in 
great detail. Table 4 shows initial productivity deciles (as early-career scientists) in the past of top-
performing mid-career scientists across the various academic disciplines.  
 
Over half of these top mid-career scientists were in productivity decile 10 in their early-career stage 
(52.39%), with 20.94% starting off in decile 9 and 10.33% decile 8. Altogether, more than 80% were in 
productivity deciles 8–10 during their early-career stage (83.66%). Only a small fraction of these scientists 
moved up from the lowest three deciles, with just 162 making a significant leap from decile 1 to decile 10 
(0.51%, referred to as Jumpers-Up) and 232 from decile 2 to decile 10 (0.72%). We have full lifetime 
biographical and publishing profiles of every scientist, including these few hundreds of outliers. Overall, 
only 2.2% (717 scientists out of 32,063) from deciles 1–3 reached decile 10. In social science disciplines, 
the likelihood of such extreme upward mobility was slightly higher compared with STEMM disciplines 
(3.13% vs. 2.22%) but still relatively rare. 
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Figure 3. (Left panel) How were the top-performing (N=32,063, productivity decile 10) mid-career scientists distributed by productivity percentiles 
(range: 0–100) when they were in their early-career stage? (Right panel) How were the bottom-performing (N=32,063, productivity decile 1) mid-
career scientists distributed by productivity percentiles (range: 0–100) when they were in their early-career stage? Kernel density plots, initial 
percentile distribution, by discipline. 
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Figure 4. (Left panel) How were the top-performing (N=32,063, productivity decile 10) late-career scientists distributed by the productivity 
percentiles (range: 0–100) when they were in their mid-career stage? (Right panel) How were the bottom-performing (N=32,075, productivity decile 
1) late-career scientists distributed by productivity percentiles (range: 0–100) when they were in their mid-career stage? Kernel density plots, initial 
percentile distribution, by discipline. 
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The variation in extreme mobility from decile 1 to decile 10 (Jumpers-Up) across disciplines is 
significant, with rates ranging from 0.26% in ECON to 1.33% in PHYS. Only one economist (0.26%) 
and one immunologist (0.32%) made the leap from decile 1 to decile 10 (out of 385 and 315, 
respectively). We know a high number of details of their specific academic careers based on our 
bibliometric data (but not their scientific biographies based on administrative data from national 
registries of scientists as in single-nation studies—not available for a multicountry study). The mobility 
from decile 10 to decile 10 shows variability as well, with less than 50% of scientists in COMP, ENG, 
and IMMU remaining in decile 10 compared with 57–58% in MATH and PHYS. 
 
Table 4. Mobility of top performers between two career stages: early career (initial stage) and mid-
career (target stage): From which initial productivity deciles (at an early-career stage) do top-
performing scientists at a mid-career stage come from? Late-career scientists who were top performers 
at a mid-career stage (N=32,063) by academic discipline and initial productivity decile (frequencies 
and percentages) 

 
Total 
 

Bottom 
10% 

Decile 
2 

Decile 
3 

Decile 
4 

Decile 
5 

Decile 
6 

Decile 
7 

Decile 
8 

Decile 
9 

Top 
10% 

Late-career scientists who were top performers at a mid-career stage  
N 32,063 162 232 323 540 799 1,175 2,007 3,312 6,714 16,799 TOTAL 
% 100 0.51 0.72 1.01 1.68 2.49 3.66 6.26 10.33 20.94 52.39 
N 1,259 7 14 12 35 35 48 65 149 234 660 SOCIAL 
% 100 0.56 1.11 0.95 2.78 2.78 3.81 5.16 11.83 18.59 52.42 
N 30,804 155 218 311 505 764 1,127 1,942 3,163 6,480 16,139 STEMM 
% 100 0.50 0.71 1.01 1.64 2.48 3.66 6.30 10.27 21.04 52.39 
N 2,373 7 11 9 25 57 72 147 273 510 1,262 AGRI 

 % 100 0.29 0.46 0.38 1.05 2.40 3.03 6.19 11.50 21.49 53.18 
N 4,582 24 41 50 100 121 187 296 476 933 2,354 BIO 

 % 100 0.52 0.89 1.09 2.18 2.64 4.08 6.46 10.39 20.36 51.37 
N 326 2 4 2 12 7 16 15 39 66 163 BUS 

 % 100 0.61 1.23 0.61 3.68 2.15 4.91 4.60 11.96 20.25 50.00 
N 1,490 7 11 14 21 34 50 85 149 306 813 CHEM 

 % 100 0.47 0.74 0.94 1.41 2.28 3.36 5.70 10.00 20.54 54.56 
N 765 4 9 20 20 25 29 57 82 150 369 COMP 

 % 100 0.52 1.18 2.61 2.61 3.27 3.79 7.45 10.72 19.61 48.24 
N 1,437 5 4 14 14 32 51 81 149 297 790 EARTH 

 % 100 0.35 0.28 0.97 0.97 2.23 3.55 5.64 10.37 20.67 54.98 
N 385 1 5 5 15 11 13 23 44 64 204 ECON 

 % 100 0.26 1.30 1.30 3.90 2.86 3.38 5.97 11.43 16.62 52.99 
N 1,282 7 12 14 26 32 59 88 153 259 632 ENG 

 % 100 0.55 0.94 1.09 2.03 2.50 4.60 6.86 11.93 20.20 49.30 
N 652 4 2 4 7 17 25 36 64 137 356 ENVIR 

 % 100 0.61 0.31 0.61 1.07 2.61 3.83 5.52 9.82 21.01 54.60 
N 315 1 3 5 7 11 10 26 28 69 155 IMMU 

 % 100 0.32 0.95 1.59 2.22 3.49 3.17 8.25 8.89 21.90 49.21 
N 584 3 2 5 11 19 27 38 64 115 300 MATER 

 % 100 0.51 0.34 0.86 1.88 3.25 4.62 6.51 10.96 19.69 51.37 
N 701 3 3 9 11 9 22 37 60 141 406 MATH 

 % 100 0.43 0.43 1.28 1.57 1.28 3.14 5.28 8.56 20.11 57.92 
N 13,108 46 63 113 205 330 491 869 1,360 2,902 6,729 MED 

 % 100 0.35 0.48 0.86 1.56 2.52 3.75 6.63 10.38 22.14 51.34 
N 587 5 6 3 12 16 18 34 51 137 305 NEURO 

 % 100 0.85 1.02 0.51 2.04 2.73 3.07 5.79 8.69 23.34 51.96 
N 2,928 39 51 51 46 61 86 148 254 524 1,668 PHYS 

 % 100 1.33 1.74 1.74 1.57 2.08 2.94 5.05 8.67 17.90 56.97 
N 548 4 5 5 8 17 19 27 66 104 293 PSYCH 
% 100 0.73 0.91 0.91 1.46 3.10 3.47 4.93 12.04 18.98 53.47 
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Similarly, when examining the mobility from mid-career to late-career for top-performing scientists 
(Table 5), the persistence in top productivity is even more pronounced, with 53.83% of scientists who 
started in decile 10 remaining in decile 10. Only one in six (16.61%) of scientists in decile 10 did not 
originate from deciles 8–10, and about 3% came from deciles 1–3 (3.39%). Among all current top-
performing late-career scientists, there are only four Jumpers-Up: two economists (0.52%) and two 
psychologists (0.36%) who experienced extreme mobility from decile 1 to decile 10 (out of 385 and 548, 
respectively). For these individuals, we have comprehensive lifetime data on their demographics, 
publishing and collaboration patterns, and scholarly impact. 
 
Table 5. Mobility of top performers between two career stages: mid-career (initial stage) and late 
career (target stage): From which initial productivity deciles (at a mid-career stage) do top-performing 
scientists at a late-career stage come from? Late-career scientists who were top performers at a late-
career stage (N=32,063) by academic discipline and initial productivity decile (frequencies and 
percentages) 

 
Total 
 

Bottom 
10% 

Decile 
2 

Decile 
3 

Decile 
4 

Decile 
5 

Decile 
6 

Decile 
7 

Decile 
8 

Decile 
9 

Top 
10% 

Late-career scientists who are top performers at a late-career stage 
N 32,063 436 305 345 541 756 1,125 1,816 3,139 6,339 17,261 TOTAL 
% 100 1.36 0.95 1.08 1.69 2.36 3.51 5.66 9.79 19.77 53.83 
N 1,259 10 14 21 32 44 55 58 131 249 645 SOCIAL 
% 100 0.79 1.11 1.67 2.54 3.49 4.37 4.61 10.41 19.78 51.23 
N 30,804 426 291 324 509 712 1,070 1,758 3,008 6,090 16,616 STEMM 
% 100 1.38 0.94 1.05 1.65 2.31 3.47 5.71 9.76 19.77 53.94 
N 2,373 23 16 17 34 49 81 131 245 474 1,303 AGRI 

 % 100 0.97 0.67 0.72 1.43 2.06 3.41 5.52 10.32 19.97 54.91 
N 4,582 65 38 45 85 104 170 266 467 952 2,390 BIO 

 % 100 1.42 0.83 0.98 1.86 2.27 3.71 5.81 10.19 20.78 52.16 
N 326 6 3 4 11 14 16 9 38 70 155 BUS 

 % 100 1.84 0.92 1.23 3.37 4.29 4.91 2.76 11.66 21.47 47.55 
N 1,490 14 7 17 22 32 42 60 133 291 872 CHEM 

 % 100 0.94 0.47 1.14 1.48 2.15 2.82 4.03 8.93 19.53 58.52 
N 765 11 8 9 19 32 25 55 59 145 402 COMP 

 % 100 1.44 1.05 1.18 2.48 4.18 3.27 7.19 7.71 18.95 52.55 
N 1,437 12 21 12 23 42 61 83 155 308 720 EARTH 

 % 100 0.84 1.46 0.84 1.60 2.92 4.24 5.78 10.79 21.43 50.10 
N 385 2 8 8 13 14 21 21 31 69 198 ECON 

 % 100 0.52 2.08 2.08 3.38 3.64 5.45 5.45 8.05 17.92 51.43 
N 1,282 13 12 19 26 33 43 81 118 240 697 ENG 

 % 100 1.01 0.94 1.48 2.03 2.57 3.35 6.32 9.20 18.72 54.37 
N 652 8 9 3 11 12 20 47 58 128 356 ENVIR 

 % 100 1.23 1.38 0.46 1.69 1.84 3.07 7.21 8.90 19.63 54.60 
N 315 3 4 5 6 3 16 22 30 61 165 IMMU 

 % 100 0.95 1.27 1.59 1.90 0.95 5.08 6.98 9.52 19.37 52.38 
N 584 8 1 6 10 5 15 30 63 117 329 MATER 

 % 100 1.37 0.17 1.03 1.71 0.86 2.57 5.14 10.79 20.03 56.34 
N 701 8 3 12 11 14 14 44 71 123 401 MATH 

 % 100 1.14 0.43 1.71 1.57 2.00 2.00 6.28 10.13 17.55 57.20 
N 13,108 187 131 125 200 312 480 771 1,344 2,671 6,887 MED 

 % 100 1.43 1.00 0.95 1.53 2.38 3.66 5.88 10.25 20.38 52.54 
N 587 9 1 7 6 14 10 33 62 119 326 NEURO 

 % 100 1.53 0.17 1.19 1.02 2.39 1.70 5.62 10.56 20.27 55.54 
N 2,928 65 40 47 56 60 93 135 203 461 1,768 PHYS 

 % 100 2.22 1.37 1.61 1.91 2.05 3.18 4.61 6.93 15.74 60.38 
N 548 2 3 9 8 16 18 28 62 110 292 PSYCH 
% 100 0.36 0.55 1.64 1.46 2.92 3.28 5.11 11.31 20.07 53.28 
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Analogous analyses were performed for the lowest productivity deciles. Supplementary Table 5 shows 
the decile origins of currently bottom-performing scientists (productivity decile 1), tracing their initial 
productivity deciles during their early-career stages and across various academic disciplines. The 
observed patterns are similar to, but less pronounced than, those seen for the top performers. 
Approximately three-fourths (75.31%) of bottom performers originated from the three lowest 
productivity deciles (deciles 1, 2, and 3), with over one-third coming from the lowest decile (37.41%). 
Conversely, only 2.28% (728 scientists) came from the top three deciles, including just 0.26% (82 
scientists) from the highest decile 10 (referred to as Droppers-Down). Also for these scientists, we have 
full data  (demographics, publishing and collaboration patterns, scholarly impact). 
 
Supplementary Table 6 shows the decile origins of current bottom-performing late-career scientists 
during their mid-career stage, revealing similar mobility patterns. The majority of current decile 1 
scientists came from the bottom three deciles (68.40%), while only 4.34% originated from the top three 
deciles. A mere 222 scientists (0.69%) experienced a drop from decile 10 to decile 1 (Droppers-Down). 
Upward mobility is of particular interest to science policy; downward mobility, in contrast, may often be 
attributed to personal life circumstances, such as health issues or family problems, which cannot be fully 
analyzed through bibliometric datasets. 
 
Changing Productivity Classes: All Academic Disciplines Combined 
 
The Sankey diagram (Figure 5) serves as a visual guide to better help understand the concept of 
scientists’ mobility across productivity classes throughout their careers. This diagram illustrates the 
movement of scientists between productivity deciles at different career stages: early career (left: top and 
bottom), mid-career (middle: top and bottom), and late career (right: top and bottom). Our focus is on 
horizontal top-to-top and bottom-to-bottom mobility as well as the transitions involving extreme 
downward mobility from the top-to-bottom and extreme upward mobility from bottom-to-top. 
 
Figure 5 displays the mobility of scientists across all academic disciplines combined (N=320,564), 
Figure 6 shows the mobility for all social science disciplines combined (N=12,585), and Figure 7 shows 
all STEMM disciplines combined (N=307,979). The left columns of the diagrams represent the 
distribution of early-career scientists within the top- and bottom productivity deciles (each decile 
totaling 100%), the middle columns represent mid-career scientists, and the right columns represent late-
career scientists within the same two productivity classes. To enhance clarity, deciles 2 through 9 are 
excluded from the diagram. 
 
The horizontal top-to-top and bottom-to-bottom mobility between the early- and mid-career stages is 
represented by thick flows: More than a half of global top performers continue as global top performers 
(52.39%), and more than one-third of global bottom performers continue as global bottom performers 
(37.41%). Extreme vertical top-to-bottom and bottom-to-top mobilities are rare and represented as thin 
downward and upward flows: Only 0.26% of top productive early-career scientists (82 scientists) land in 
the bottom productivity mid-career scientists—and only 0.51% bottom productive early-career scientists 
(162 scientists) land in the class of top productive mid-career scientists. 
 
The mobility patterns between mid-career and late-career stage are very similar. The mobility patterns 
do not differ between social science disciplines combined (Figure 6) and STEMM disciplines combined 
(Figure 7): Surprisingly, despite different publishing and collaboration patterns, the top-to-top mobility 
for the early- to mid-career transition is almost exactly the same; and for the mid- to late-career 
transition, it is slightly higher for STEMM disciplines. It is as rare in the SOCIAL disciplines to 
experience extreme upward mobility—from decile 1 to decile 10—as it is in the STEMM disciplines. In 
our sample of SOCIAL scientists (N=12,585), there are only seven scientists involved in the first 
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transition and only 10 scientists involved in the second transitions out of 1,259 scientists (Table 6). Here 
and elsewhere, statistical significance of differences are not shown because we work with a population 
of scientists (all scientists meeting the inclusion criteria) rather than with their sample (a selection of all 
scientists), which is an essential difference between small-scale and large-scale studies.  
 

 
 
Figure 5. Scientists’ mobility between productivity classes in the three stages of a scientific career. All 
academic disciplines combined (TOTAL), current late-career scientists. All observations ranked and 
clustered into productivity deciles, top- (upper 10%, productivity decile 10) and bottom- (bottom 10%, 
productivity decile 1) productivity classes only (N = 320,564) (percentages, top class, and bottom class 
100% each) 
 

 
 
Figure 6. Scientists’ mobility between productivity classes in the three stages of a scientific career. All 
social science disciplines combined (SOCIAL), current late-career scientists. All observations ranked 
and clustered into productivity deciles, top- (upper 10%, productivity decile 10) and bottom- (bottom 
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10%, productivity decile 1) productivity classes only (N = 12,585) (percentages, top class and bottom 
class, 100% each) 
 

 
 
Figure 7. Scientists’ mobility between productivity classes in the three stages of a scientific career. All 
STEMM academic disciplines combined, current late-career scientists. All observations ranked and 
clustered into productivity deciles, top- (upper 10%, productivity decile 10) and bottom- (bottom 10%, 
productivity decile 1) productivity classes only (N = 307,979) (percentages, top class and bottom class, 
100% each) 
 
From an aggregated perspective of all academic disciplines combined (Table 6), the mobility patterns 
are clear: Over half (52.39% and 53.83%) of the scientists who achieve top productivity (decile 10) 
remain in this top category. Similarly, about one-third (37.41% and 30.68%) of those in the bottom 
productivity category (decile 1) continue to stay in the same class. This indicates an intriguing “locking-
in” mechanism within academic careers that warrants further scholarly investigation. 
 
Importantly, our approach does not rely on publication numbers because productivity across OECD 
countries has generally increased over the past decades, especially when computed on a full counting 
rather than fractional counting basis. Instead, we rank all current late-career scientists by productivity, 
assigning them to specific productivity classes within their respective academic disciplines. We then 
retrospectively rank these late-career scientists based on their productivity during their early- and mid-
career stages by using four-year periods to measure their productivity at these times (“initial academic 
decile” in productivity mobility in Table 6).  
 
The likelihood of experiencing extreme upward mobility (moving from decile 1 to decile 10) or extreme 
downward mobility (moving from decile 10 to decile 1) between productivity classes is very low. 
According to our data (Table 6), in the context of our prestige-normalized counting approach, the 
chances of radical change in publishing behavior compared with peers within an academic discipline are 
minimal. 
 
Specifically, only 162 scientists (0.51%) who became top performers in their mid career stage were 
initially in the bottom productivity class during their early career stage. Similarly, only 436 scientists 
(1.36%) who were top performers in their late career stage started as bottom performers in their mid 
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career stage. The chances for extreme downward mobility are also rare, with less than 1% of scientists 
moving from the top- to the bottom productivity class in successive career stages (0.26% and 0.69%, 
respectively). These data indicate that radical changes in publishing behavior that lead to such 
significant shifts in productivity classes are quite uncommon. 
 
Table 6. Mobility between top- (decile 10) and bottom- (decile 1) productivity classes while moving 
up from the early-career stage to mid-career stage and from the mid-career to late-career stage by all 
academic disciplines combined (N = 320,564, top panel), social science disciplines combined (N = 
12,585, middle panel), and STEMM disciplines combined (N = 307,979, bottom panel) (frequencies 
and percentages)  

Career stage 
(transition from) 

Initial 
productivi
ty decile 

Career stage 
(transition to) 

Target 
productivi
ty decile 

Number of 
scientists in 
transition 

Number of 
scientists in 
productivity 

class 

% 

TOTAL (ALL DISCIPLINES COMBINED) 
Early career Bottom  Mid-career Bottom 11,996 32,063 37.41 
Early career Bottom  Mid-career Top 162 32,063 0.51 
Early career Top  Mid-career Bottom 82 32,063 0.26 
Early career Top  Mid-career Top 16,799 32,063 52.39 
 Mid-career Bottom Late career Bottom 9,836 32,063 30.68 
 Mid-career Bottom Late career Top 436 32,063 1.36 
 Mid-career Top Late career Bottom 222 32,063 0.69 
 Mid-career Top Late career Top 17,261 32,063 53.83 

SOCIAL SCIENCE DISCIPLINES COMBINED 
Early career Bottom  Mid-career Bottom 433 1,259 34.39 
Early career Bottom  Mid-career Top 7 1,259 0.56 
Early career Top  Mid-career Bottom 3 1,259 0.24 
Early career Top  Mid-career Top 660 1,259 52.42 
 Mid-career Bottom Late career Bottom 400 1,259 31.77 
 Mid-career Bottom Late career Top 10 1,259 0.79 
 Mid-career Top Late career Bottom 9 1,259 0.71 
 Mid-career Top Late career Top 645 1,259 51.23 

STEMM DISCIPLINES COMBINED 
Early career Bottom  Mid-career Bottom 11,563 30,804 37.54 
Early career Bottom  Mid-career Top 155 30,804 0.50 
Early career Top  Mid-career Bottom 79 30,804 0.26 
Early career Top  Mid-career Top 16,139 30,804 52.39 
 Mid-career Bottom Late career Bottom 9,436 30,804 30.63 
 Mid-career Bottom Late career Top 426 30,804 1.38 
 Mid-career Top Late career Bottom 213 30,804 0.69 
 Mid-career Top Late career Top 16,616 30,804 53.94 
  
Changing Productivity Classes: Cross-Disciplinary Differentiation 
 
The aggregated pictures of all academic disciplines combined, all STEMM disciplines combined, and 
all SOCIAL disciplines combined hide a much more nuanced picture of individual academic 
disciplines with their distinct mobility patterns between productivity classes.  
 
Focusing on the horizontal top-to-top (productivity decile 10 to decile 10) mobility first, for almost all 
academic disciplines, more than 50% of the top productivity scientists continue as top productivity 
scientists (Tables 7 and 8). The highest share is observed for MATH and PHYS in both transitions (as 
well as CHEM in the second transition), reaching as much as 60.38% for PHYS in the second 
transition. Scientists representing bottom-to-top mobility (Jumpers-Up), which is of great interest in 
productivity studies, are extremely rare across all academic disciplines: Their share ranges from 0.29% 
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for AGRI to 1.33% for PHYS in the first career transition and from 0.36% for PSYCH and 1.84% for 
BUS in the  second career transition. 
 

Table 7. Four mobility types by academic discipline between the early-career and mid-career stage, by 
discipline, percentages (N = 320,564) 

Top-to-top mobility  
 
 

Bottom-to-bottom 
mobility 

 

Top-to-bottom mobility  
 

Bottom-to-top mobility 
 

Academic 
discipline 

Scientists at 
early-
career 
stage: top 
to top (%) 
 
 

As % of 
top 
scientists 
at mid-
career 
stage 

Scientists at 
early-
career 
stage: 
bottom to 
bottom (%) 
 

As % of 
bottom 
scientists 
at mid-
career 
stage 

Scientists at 
early-
career 
stage: top 
to bottom 
(%) 
 

As % of 
bottom 
scientists 
at mid-
career 
stage 

Scientists at 
early-
career 
stage: 
bottom to 
top (%) 
 

As % of 
top 
scientists 
at mid-
career 
stage 

AGRI 53.18 53.18 38.60 38.60 0.17 0.17 0.29 0.29 
BIO 51.37 51.37 36.56 36.56 0.33 0.33 0.52 0.52 
BUS 50.00 50.00 30.37 30.37 0.31 0.31 0.61 0.61 
CHEM 54.56 54.56 41.01 41.01 0.07 0.07 0.47 0.47 
COMP 48.24 48.24 32.42 32.42 0.13 0.13 0.52 0.52 
EARTH 54.98 54.98 40.36 40.36 0.21 0.21 0.35 0.35 
ECON 52.99 52.99 29.87 29.87 0.26 0.26 0.26 0.26 
ENG 49.30 49.30 36.97 36.97 0.23 0.23 0.55 0.55 
ENVIR 54.60 54.60 35.58 35.58 0.46 0.46 0.61 0.61 
IMMU 49.21 49.21 35.87 35.87 0.63 0.63 0.32 0.32 
MATER 51.37 51.37 38.70 38.70 - - 0.51 0.51 
MATH 57.92 57.92 36.23 36.23 0.29 0.29 0.43 0.43 
MED 51.34 51.34 36.37 36.37 0.16 0.16 0.35 0.35 
NEURO 51.96 51.96 39.18 39.18 0.34 0.34 0.85 0.85 
PHYS 56.97 56.97 42.25 42.25 0.75 0.75 1.33 1.33 
PSYCH 53.47 53.47 39.96 39.96 0.18 0.18 0.73 0.73 
SOCIAL 52.42 52.42 34.39 34.39 0.24 0.24 0.56 0.56 
STEMM 52.39 52.39 37.54 37.54 0.26 0.26 0.50 0.50 
TOTAL 52.39 52.39 37.41 37.41 0.26 0.26 0.51 0.51 

Note: “-“ = no scientists involved in this transition 
 

Model Approach: Logistic Regression 
 
In this subsection, we introduce a multidimensional approach and analyze the odds ratio estimates of 
membership in the classes of global top- and bottom productive scientists for current late-career 
scientists and, retrospectively, for current late-career scientists when they were mid-career scientists 
(the upper 10% and the bottom 10%, or decile 10 and decile 1, with separate models for each 
discipline, N=320,564). 
 
We use a single demographic variable (gender, binary: male or female) and four variables we have 
computed using micro-level data about individual scientists. One variable is related to the article-
level metrics of individual scholarly impact (field-normalized citations received within the first four 
years after each article has been published); two other variables are related to individual publishing 
and collaboration patterns (lifetime median team size and lifetime international collaboration rate); 
and one variable is related to publishing productivity in earlier career stages (prior membership in 
the global top- and bottom productivity classes at the early-career stage and at the mid-career stage).  
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Table 8. Four mobility types by academic discipline between the mid-career and late-career stage, 
percentages (N = 320,564) 

Top-to-top mobility  
 
 

Bottom-to-bottom 
mobility 

 

Top-to-bottom mobility  
 

Bottom-to-top mobility 
 

Academic 
discipline Scientists at 

mid-career 
stage: top 
to top (%) 

As % of 
top 
scientists 
at late-
career 
stage 

Scientists at 
mid-career 
stage: 
bottom to 
bottom (%) 

As % of 
bottom 
scientists 
at late-
career 
stage 

Scientists at 
mid-career 
stage: top 
to bottom 
(%) 

As % of 
bottom 
scientists 
at late-
career 
stage 

Scientists at 
mid-career 
stage: 
bottom to 
top (%) 

As % of 
top 
scientists 
at late-
career 
stage 

AGRI 54.91 54.91 32.20 32.20 0.25 0.25 0.97 0.97 
BIO 52.16 52.16 28.26 28.26 0.87 0.87 1.42 1.42 
BUS 47.55 47.55 26.38 26.38 0.61 0.61 1.84 1.84 
CHEM 58.52 58.52 33.42 33.42 0.40 0.40 0.94 0.94 
COMP 52.55 52.55 28.37 28.29 0.26 0.26 1.44 1.44 
EARTH 50.10 50.10 35.00 35.00 0.28 0.28 0.84 0.84 
ECON 51.43 51.43 29.09 29.09 0.78 0.78 0.52 0.52 
ENG 54.37 54.37 29.88 29.88 0.47 0.47 1.01 1.01 
ENVIR 54.60 54.60 28.68 28.68 0.46 0.46 1.23 1.23 
IMMU 52.38 52.38 35.87 35.42 - - 0.95 0.95 
MATER 56.34 56.34 32.53 32.20 0.34 0.34 1.37 1.37 
MATH 57.20 57.20 32.38 32.38 0.29 0.29 1.14 1.14 
MED 52.54 52.54 29.48 29.48 0.82 0.82 1.43 1.43 
NEURO 55.54 55.54 31.35 31.35 0.34 0.34 1.53 1.53 
PHYS 60.38 60.38 34.53 34.53 1.13 1.13 2.22 2.22 
PSYCH 53.28 53.28 36.86 36.86 0.73 0.73 0.36 0.36 
SOCIAL 51.23 51.23 31.77 31.77 0.71 0.71 0.79 0.79 
STEMM 53.94 53.94 30.63 30.62 0.69 0.69 1.38 1.38 
TOTAL 53.83 53.83 30.68 30.67 0.69 0.69 1.36 1.38 

Note: “-“ = no scientists involved in this transition 
All publications (lifetime) and cited references (lifetime) were used to compute a unique discipline 
to which every scientists was ascribed (see Dataflow in Figure 1). The field-weighted four-year 
citation impact is computed for each individual publication separately and subsequently averaged to 
all publications over one’s lifetime; publishing and collaboration pattern variables are also computed 
from a lifetime perspective of individual scientists: All journal articles and articles in conference 
proceedings published throughout one’s lifetime are examined. In contrast, membership in 
productivity classes has been computed for two specific periods of careers (early- and mid-career 
periods). In addition, we also use in our regression models an institutional variable (TOP 200 
institution globally, for logistic regression analysis for top productive late-career scientists only). 
The variables and their short descriptions are presented in Table 9. The inverse correlation matrices 
and main diagonals are shown in Electronic Supplementary Material (Supplementary Tables 7 
through 10). 
 
Extensive previous research on individual productivity has suggested that the most important 
predictors of high research productivity at the individual level are international collaboration (Dusdal 
& Powell, 2021), working in teams (Wagner, 2018), gender (Fox & Nikivinicze, 2021; Larivière, 
2013), career stage and academic experience (Jung, 2014; Shin & Cummings, 2010; Kwiek, 2016), 
and publication productivity earlier in academic careers (Horta & Santos, 2016; Kwiek & Roszka 
2024a, 2024b), consistently with the Matthew effect in science (the rich get disproportionately richer 
while the poor get poorer; DiPrete & Eirich, 2006). As a result—and specifically in the context of 
our two-dimensional results visualized through Sankey diagrams that show powerful top-to-top and 
bottom-to-bottom mobility in terms of productivity—we have added the prior membership in global 
top- and bottom productivity classes as variables used in the regression analysis. 
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Table 9. Variables used in regression analysis 

  

No. Variable Description 
1. Gender Gender (binary: female/male) provided by Elsevier’s ICSR Lab. Variable classified based on the first name, last name, and 

dominant country from the first year of publishing using the Namsor tool. Gender accepted with the probability score >= 0.85 
only. 

2. Field-weighted four-year 
citation impact (FWCI 4y) 

Average of the FWCI 4y metric values assigned to each publication in author’s lifetime publication portfolio. The FWCI 4y 
metric value of a publication means the ratio of the number of citations of that publication (obtained in the publication year and 
three consecutive years) to the average number of citations for a similar publication (publication from the same discipline group 
in Scopus 4-digit ASJC discipline classification) in the same time frame.  

3. International collaboration 
rate (lifetime) 

Share of author’s international collaborative publications among all collaborative publications (solo publications excluded). For a 
publication to be considered collaborative, the number of all authors in the paper had to be greater than or equal to two. For a 
publication to be considered international, the number of affiliation countries in the paper had to be greater than or equal to two. 

4. Median team size (lifetime) Median of the number of authors for each publication (author + number of collaborators) in author’s lifetime publication 
portfolio. For publications with the number of authors greater than 10, the number of authors is 10. 

5. Discipline Dominant discipline based on the modal value from all disciplines assigned to the journals of all cited references in all papers in 
scientists’ lifetime publication portfolios.  

6. TOP200 institutional 
affiliation 

Binary value indicating belonging (true/false) to one of the 200 top institutions. The list of top institutions was ranked based on 
the institutions’ total scholarly output in the 10-year period of 2014–2023. Each author has been assigned to one institution as the 
dominant one based on the modal value from institutions indicated in author’s lifetime publication portfolio. Used only for second 
transitions: mid-career to late career (affiliation in early career is too distant in time). 

7. 8. Early-career / mid-career 
top class 

Membership in the global top 10% of scientists among early-career /mid-career scientists in terms of research productivity, 
separately within 16 disciplines. 

9. 10. Early-career / mid-career 
bottom class 

Membership in the global bottom 10% of scientists among early-career / mid-career scientists in terms of research productivity 
within 16 disciplines. 
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First, we analyze the top productivity classes: Odds ratio estimates of membership in the class of global 
top productive mid-career scientists (Table 10) and global top productive late-career scientists (Table 
11). In the vast majority of disciplines, high productivity in an earlier stage of career is the most 
powerful predictor of high productivity in a later stage, with Exp(B) in the range of 11.68 (IMMU) to 
22.97 (MATH) for the first career stage and 13.89 (EARTH) to 21.82 (MATH) for the second career 
stage (in all cases: all other things being equal; the predictor is not statistically significant for two 
disciplines in the first stage and six disciplines in the second stage).  
 
The direction of the impact of the gender variable (being a male scientist) is consistent across 
disciplines; however, the impact is highly differentiated. Being male increases the probability of success 
in 13 out of 16 disciplines for mid-career scientists by as little as 3–7% in COMP, MATH, and ECON 
and by more than 100% (in IMMU and NEURO). For late-career scientists, gender is statistically 
significant in 10 disciplines, and its impact is smaller; being male increases the odds of success by 3–
14% (in AGRI, EARTH, MATER) to 46–70% (in NEURO, BIO, and IMMU), with the exception of 
MATH, where it decreases the odds by 2%, again, all other things being equal. 
 
Interestingly, the probability of success for men differs between highly mathematized disciplines, which 
traditionally have the lowest percentage of women (MATH, COMP, ENG, and PHYS), and the 
disciplines with high percentages of women (see Supplementary Table 1 for male and female 
participation data in our sample). In the former cluster, the impact of gender is marginal (COMP and 
MATH in the first stage; MATH in the second stage) or not statistically significant (ENG and PHYS in 
the first stage, and COMP, ENG, and PHYS in the second stage). In contrast, in the disciplines with high 
participation of women, the probability of success for men is 86% higher than for women in BIO, 112% 
higher in IMMU, and 127% higher in NEURO (for the first stage), and it is 70% higher in IMMU, 46% 
higher in NEURO, and 47% higher in BIO, the largest exception to the rule being MED, which has 
much lower increases for men compared with women. 
 
For all disciplines, at both career stages, article-level citation metrics is statistically significant (except 
for PSYCH and COMP in the second stage): an increase of a field-weighted citation impact for all 
publications from an early-career period by one unit increases the probability of success from a few 
percentage points (as in BUS and PSYCH, as well as COMP and PHYS) to as much as 53% in AGRI, 
all other things being equal. In the second stage, the impact in the mid-career stage is the most 
consequential in MATER, increasing the odds by 50%.  
 
In addition, international collaboration rate at an early-career period (and at a  mid-career period) is 
statistically significant for all disciplines, both from the STEMM and SOCIAL clusters of academic 
disciplines. Generally, the probability of success increases by about 1% for a one-unit increase so that a 
30% higher rate increases the odds by 30%. Finally, team size is statistically significant: The higher the 
median team size at an early-career period, the higher chances of success. The team size is especially 
consequential for membership in top productive mid-career class in traditionally sole-authored or small-
team disciplines, such as the three social science disciplines (BUS, ECON, and PSYCH) and MATH in 
the STEMM cluster. In these disciplines, a one-unit increase (i.e., one more coauthor in publications in 
an early-career period) increases the probability of success by 25–40%. In other words, publishing on 
average with three additional co-authors—or working in larger teams—increases the probability of 
success by as much as 75–120%. 
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Table 10. Logistic regression statistics: odds ratio estimates of membership in the class of global top productive mid-career scientists (the top 10%, separately for 
each academic discipline) (N = 320,564) 
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R2 0.25 0.22 0.21 0.26 0.18 0.26 0.23 0.20 0.26 0.21 0.24 0.28 0.22 0.25 0.34 0.25 
Male 1.32 (3) 1.86 (3) 1.61 (3) 1.30 (3) 1.07 (3) 1.29 (3) 1.03 (1) 0.78 1.21 2.12 (3) 1.41 (1) 1.05 (1) 1.30 (3) 2.27 (3) 0.95 1.36 (2) 
Avg. FWCI 4y Early 1.53 (3) 1.14 (3) 1.04 (3) 1.37 (3) 1.05 (3) 1.24 (3) 1.12 (3) 1.16 (3) 1.27 (3) 1.22 (3) 1.41 (3) 1.23 (3) 1.02 (3) 1.37 (3) 1.05 (3) 1.08 (3) 
Inter. Collab. Rate Early 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.00 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.00 (3) 1.01 (3) 1.00 (3) 1.02 (3) 1.01 (3) 
Median Team Size Early 1.06 (3) 1.01 (3) 1.31 (3) 0.99 (3) 1.12 (3) 1.05 (3) 1.35 (3) 0.96 (2) 1.01 (3) 1.02 (3) 1.06 (3) 1.40 (3) 1.08 (3) 1.16 (3) 1.17 (3) 1.25 (3) 
Top Early 15.39 (3) 15.87 3) 15.10 (3) 17.81 (3) 14.64 (3) 17.17 (3) 17.49 (3) 14.33 18.16 11.68 (3) 13.53 (2) 22.97 (3) 16.39 (3) 14.25 (3) 11.92 (2) 18.52 (2) 
Constant 0.02 (3) 0.02 (3) 0.02 (1) 0.02 (1) 0.03 (1) 0.02 (2) 0.02 (1) 0.06 0.02 0.02 (2) 0.02 0.02 0.03 (3) 0.01 (2) 0.01 0.02 

Note: (1) = p-value ≤ 0.05; (2) = p-value ≤ 0.01; (3) = p-value ≤ 0.001 
 

Table 11. Logistic regression statistics: odds ratio estimates of membership in the class of global top productive late-career scientists (the top 10%, separately for 
each academic discipline) (N = 320,564) 

Model 
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R2 0.25 0.22 0.19 0.29 0.22 0.21 0.21 0.26 0.25 0.24 0.28 0.28 0.23 0.26 0.35 0.24 
Male 1.07 (3) 1.47 (3) 1.18 1.27 (3) 0.97 1.14 (2) 1.26 (3) 0.89 1.09 1.70 (2) 1.13 (1) 0.98 (1) 1.24 (3) 1.46 (3) 0.85 0.95 
Avg. FWCI 4y Mid 1.31 (3) 1.03 (3) 1.12 (3) 1.28 (3) 1.05 1.10 (3) 1.03 (3) 1.09 (2) 1.18 (3) 1.14 (3) 1.50 (3) 1.28 (3) 1.02 (3) 1.20 (3) 1.07 (3) 1.33 
Inter. Collab. Rate Mid 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.00 (3) 1.02 (3) 1.01 (3) 1.01 (3) 1.01 (3) 1.00 (3) 1.01 (3) 1.01 (3) 1.02 (3) 1.01 (3) 
Median Team Size Mid 0.99 (3) 1.03 (3) 1.17 0.93 (3) 1.05 1.00 (3) 1.34 (3) 0.89 (1) 0.92 (3) 1.04 (3) 0.95 (3) 1.35 (3) 1.10 (3) 1.02 (3) 1.10 (3) 1.04 
TOP200 1.46 (3) 1.30 (3) 1.26 1.42 (3) 1.09 1.47 (3) 1.01 (3) 1.81 1.51 1.34 (1) 1.44 (1) 1.05 (2) 1.50 (3) 1.41 (3) 1.23 1.43 
Top Mid 18.06 (3) 16.76 (3) 12.47 22.98 (3) 17.92 13.89 (3) 16.16 (3) 18.01 18.83 14.73 (2) 18.26 (3) 21.82 (3) 16.47 (3) 19.27 (3) 13.94 16.74 
Constant 0.03 (1) 0.03 (3) 0.02 0.03(1) 0.04 0.03(1) 0.02(1) 0.05 0.04 0.02 0.02 0.02 0.02 (3) 0.02 (2) 0.01 0.03 
Note: (1) = p-value ≤ 0.05; (2) = p-value ≤ 0.01; (3) = p-value ≤ 0.001 
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However, at a late career, stage, the role of larger collaboration teams is much more diversified: In some 
academic disciplines, larger median team size at a mid-career period actually decrease the chances of 
success; in several disciplines, the team size is statistically insignificant (including BUS, COMP, and 
PSYCH); and in others, team size continues to be a highly influential predictor of success (ECON and 
MATH where a one-unit increase, i.e., one additional collaborator, increases the odds by as much as 
one-third).  
 
In models for the late-career stage, we have introduced a TOP200 variable (see Table 9). The TOP200 
predictor substantially (by 30–50%) increases the odds of success in eight disciplines, with the highest 
impact in MED, the largest discipline (by 50%—which may be linked to better access to better training 
and costly infrastructure such as, e.g., university hospitals). The predictor is statistically insignificant in 
such disciplines as BUS and PSYCH as well as COMP and PHYS. 
 
We have also analyzed the global bottom productivity classes (Supplementary Tables 11–12). The 
results are mirror images of those for global top productivity classes but only to some extent. 
Specifically, although the role of membership in the bottom productivity classes in previous career 
stages follows the expected pattern—that is, prior membership increases the odds of future 
membership—the independent variables of prior bottom productivity classes are statistically 
significant only for seven (first career period) and two (second career period) disciplines. Membership 
in the bottom productivity classes earlier (publishing years 5–14) increases the probability of 
membership in this class later (publishing years 15–24) 4–7 times in the case of the first career period 
and three times (BIO and MED only, the two largest disciplines in our sample, comprising together 
55.18% scientists) in the case of the second career period.  
 
The role of gender is not unequivocal: Being a female scientist substantially increases the odds of 
success only in AGRI and ENG in the first period and slightly (by 17%) in MED in the second stage; 
interestingly, for all disciplines but two (MED and BIO), gender is statistically insignificant in the 
second stage. What is notable is the contrast between BIO (with one of the highest shares of late-
career women scientists) and ENG (with the lowest share of late-career women scientists) in the case 
of mid-career scientists. Being male in BIO decreases the odds of success by one-third on average, but 
being male in ENG increases the odds of success by half on average (28.0% and 48.0%, respectively).  
 

Discussion and Conclusions 
 
Our global results fully support our previous small-scale single-nation research in which half of the Polish 
top productive assistant professors continued as top productive associate professors, and half of the top 
productive associate professors continued as top productive full professors (52.6% and 50.8%) (we used a 
much less granular approach: a tripartite division into top, middle, and bottom productivity classes based 
on the 20/60/20 formula, N=2326 full professors, Kwiek & Roszka, 2024a). Similarly, publishing 
productivity during assistant professorship heavily influences productivity during associate professorship 
(N=4165 associate professors, Kwiek & Roszka, 2024b). Individual-level microdata from a national 
registry of scientists suggested that Polish associate professors tend to be stuck in their productivity 
classes for years: High performers tend to remain high performers, and low performers tend to remain low 
performers for up to 40 years of their careers. Our OECD study includes 79.42% of all late-career 
scientists globally (and 83.03% of all research articles produced by late-career scientists globally). 



Following the results of our longitudinal study based on micro-level data on hundreds of thousands of 
late-career scientists, we suggest that, relatively early on in scientific careers, the productivity 
distribution within the global science profession at its two extremes (top 10% and bottom 10%) is 
already largely settled and that the early global distribution persists over time, that is, for years and 
decades. Exceptions are very rare: global bottom performers almost never become global top 
performers (our Jumpers-Up), and global top performers almost never become global bottom 
performers (our Droppers-Down). 
 
However, global data on individual publishing careers show that attrition in science—leaving science 
for good or ceasing to publish—powerfully affects the global science workforce. Some scientists stay 
on in academic science and keep publishing, while others stop publishing (Geuna & Shibayama, 2015; 
Preston, 2004). About one-third disappears from academic publishing within five years—which is 
mostly the time spent in doctoral schools—and about a half within a decade (Kwiek & Szymula, 
2023). Within the first 15 years of academic publishing, those who stay on in science are already 
distributed among decile-based classes of individual productivity, from the top 10% and bottom 10% 
within their disciplines. Our focus is only on scientists who stay on in science (and keep publishing) 
for at least 25 years, hence following our definition of late-career scientists in the present research. 
 
What is stunning is the persistence of membership in global top and bottom productivity classes from a 
life cycle perspective. Later on in their careers, the majority of global top performers (decile 10 in 
productivity distribution) keep being top performers, and about one-third of global bottom performers 
(decile 1 in productivity distribution) keep being bottom performers. For them, the probability of 
staying in global top and bottom productivity classes—horizontal mobility in productivity—over the 
decades of scientific careers is high; in contrast, the probability of radically vertically changing 
productivity classes (Jumpers-Up, Droppers-Down) is extremely limited.  
 
The global science system is highly immobile in terms of membership in productivity classes: 
Jumpers-Up and Droppers-Down are extremely rare (e.g., our micro-level data show that only 0.51% 
scientists move from early-career bottom class to mid-career top class; and only 0.26% scientists 
move from early-career top class to mid-career bottom class; there are only 162 and 82 such outliers, 
respectively, out of 32,063 scientists in all fields combined; Figure 5 and Table 6).  
 
For instance, among all current top-performing late-career economists and psychologists, there are only 
four Jumpers-Up: two economists (0.52%) and two psychologists (0.36%) who experienced extreme 
mobility from decile 1 to decile 10 (out of 385 and 548, respectively, Table 5). The strength of this 
micro-level data associated with individual Scopus IDs lies in the rich insights these IDs offer into the 
unique trajectories of outlier individuals, such as those who have made significant upward leaps in 
productivity (Jumpers-Up) and those who have made significant downward leaps in productivity 
(Droppers-Down).  
 
Large-scale computations based on raw Scopus data (e.g., 1.8 billion cited references used to define 
unique academic discipline for each scientist in our dataset) allow us to explore not only these unique 
cases but also any other individuals or groups in our study. For every scientist in our sample, we have 
access to a comprehensive set of micro-level demographic, institutional, and publishing pattern data 
derived from a global bibliometric dataset. 
 
By utilizing Scopus IDs, we can examine the publishing and collaboration histories of our four 
impressive Jumpers-Up in economics and psychology, including their evolving impact on academic 
science, their gender (determined using gender-detection software, as detailed in Karimi et al. 2016; 
Santamaria & Mihaljević 2018; Sebo 2021, 2023), their country affiliations at various stages of their 
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careers, the research intensity of their institutions, the year they began (and concluded, if applicable) 
their scientific careers, their international collaboration rate (both lifetime and during specific periods), 
their overall collaboration rate, median team size, field-weighted citation impact of each publication 
within a selected time frame (e.g., a four-year window), their average publication journal percentile 
rank, and their lifetime scholarly output by publishing outlet type (e.g., top journals, open access 
journals, etc.). 
 
In essence, we can gain a comprehensive understanding—within the constraints of the database and 
computing methods—of who these outlier scientists are, how they collaborate, publish, and work, and 
how their contributions are received by the academic community. 
 
As many as 8 in 10 global top performers classified in decile 10 of productivity distribution come from 
deciles 8–10 (83.66% of mid-career scientists and 83.39% of late-career scientists, a stunningly similar 
percentage); analogously, global bottom performers classified in decile 1 of productivity distribution 
predominantly come from deciles 1–3 (from 75.31% in the first stage to 68.40% in the second stage), 
with some cross-disciplinary variation. 
 
Individual research productivity emerges from our regression analyses as highly path dependent: For 
all the examined disciplines, STEMM and SOCIAL clusters alike, there is a single most important 
predictor of becoming a top productive late-career scientist (and a top productive mid-career scientist): 
being a top productive scientist at an earlier career stage.  
 
The TOP200 predictor (working in the 200 most research-intensive institutions globally) substantially 
(by 30–50%) increases the odds of success in half of the disciplines studied, with the highest impact in 
MED, which is the largest discipline, hence pointing to the role of expensive infrastructure in high 
performance in medical research. Finally, the team size is especially important for membership in the 
top productive mid-career class in traditionally sole-authored or small-team disciplines, such as the 
three social science disciplines (BUS, ECON, and PSYCH) and MATH in the STEMM cluster. In 
these disciplines, a one-unit increase (i.e., one more coauthor in publications in an early-career period) 
increases the probability of success by 25–40%, testifying to the importance of collaboration in science 
(Kwiek, 2021; Wagner, 2018).  
 
A general picture of mobility between productivity classes over the course of entire scientific careers 
based on discipline-aggregated data (Table 6) hides much more nuanced pictures for different 
disciplines (Tables 7–8). Some disciplines are much more competitive at the very beginning of their 
careers, with radical upward mobility being extremely difficult (as in CHEM and COMP, 0.07% and 
0.13%, respectively). There are also other disciplines that are much less competitive from the very 
beginning, in which the presence of Jumpers-Up is much higher (e.g., PHYS, 0.75%, or 10 times 
more than in CHEM). Our focus is not on globally evolving productivity over time (Rørstad & 
Aknes, 2015) or evolving productivity from a generational perspective (e.g., the old in science being 
more productive than the young or the other way round Savage & Olejniczak, 2021; Way et al., 
2017) but on interclass mobility of individuals over their entire scientific careers. 
 
Why does prior class memberships (top, bottom), to a large extent, determine later class memberships 
(top, bottom)? There are two explanations, we can speculate. First, previous research has shown that the 
distribution of productivity among scientists has always been highly skewed (Abramo et al., 2017; 
Albarrán et al., 2011; David, 1994) and that a minority of scientists have always been responsible for the 
vast majority of publications (Allison, 1980; Ruiz-Castillo & Costas, 2014; Xie, 2014). The old research 
and science policy theme, which can be summarized as “the majority of scientific work is performed by 
a relatively small number of scientists” (Crane, 1965: 714), has been at the core of these theories of 
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individual research productivity. Esteem comes from peers in science, and the reward system in science 
is based on publications. In addition, academic promotions and tenure prospects, salary levels, free time 
for research, and access to research grants are more or less directly all related to publication productivity 
(Allison et al., 1982; Stephan, 2012). Previous success breeds current and future success, here success 
being membership in the tiny class of global top research performers. 
 
Second, higher publishing productivity generally leads to new research funding, as the credibility cycle 
in academic careers shows (Latour & Woolgar, 1986). In this cycle, research published in prestigious 
journals (quantity, quality) is converted into recognition; successful grant applications are converted 
into new equipment, arguments, and articles. The credibility cycle may be more consequential, 
determining career opportunities in the early-career stages: Once funded based on prestigious articles, 
scientists’ probability to be funded again are higher than that of their less-productive colleagues, at 
least in more meritocratic national research funding systems with substantial individual-level grant 
funding. Once funded and once they have excellent publications, scientists have better odds to be 
funded again and to be promoted sooner to higher ranks, reflecting the idea that each element of the 
credibility cycle in academic careers “is but one part of an endless cycle of investment and conversion” 
(Latour & Woolgar, 1986: 200).  
 
In terms of shifting productivity classes from a life cycle perspective, scientists who are less successful 
early on in their careers (and success here requires a combination of productivity, motivation, 
determination, aspirations, mentorship, resources, quality of training, innate abilities, and luck) will 
find it difficult, if not impossible, to prove that they are as good as their more successful, more 
productive, more determined, more able, better trained, luckier, and possibly better funded colleagues. 
Initial publication success is highly correlated with later publication success, which may be explained 
by two factors: Scientists from the very beginning are different, with some being much more 
productive, and scientists happen to experience initial publishing success for reasons unrelated to their 
exceptionality. In both cases, others may view them more positively, leading to more successes in 
grant acquisition, publishing acceptance, and so forth. Any of the two major explanations separately or 
together can work for individuals, strengthening the credibility cycle in academic careers. 
 
Our research has reconfirmed the power of very strong track record as opposed to very weak track 
record in science (whenever individual scientists are assessed by research funding panels and 
promotion committees): For a variety of reasons—which we are not able to fully examine using our 
dataset—the probability of past global top performers becoming global top performers in the future 
is very high, and their probability of becoming global bottom performers is marginal. At the same 
time, the chances of global bottom performers to reach the productivity levels achieved by their top-
performing colleagues in the very same career stages and within their disciplines (Jumpers-Up) are 
marginal. Catching up with the top performers just does not happen, except for a few outliers (and in 
some system, as in Poland, it does not happen at all: The chances we have computed for Poland are 
0%; Kwiek & Roszka, 2024b). 
 
Persistent productivity stratification emerges from our individual micro-level analyses as a powerful 
feature of global science. Using large numbers of observations, our analyses confirm what traditional 
productivity theories have been claiming for decades, albeit by using small-scale interviews and 
surveys (Cole & Cole, 1973; Hermanowicz, 2012; Leišytė & Dee, 2012; Merton, 1973): Success 
breeds success (as in cumulative advantage theory of productivity), and some scientists will always 
be globally highly performing while others will always be globally low performing (as in the sacred 
spark theory of productivity). 
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More generally, the present research represents trade-offs between what is theoretically desirable and 
what is practically possible in studying the global patterns of individual research productivity, here 
based on currently available data from global bibliometric datasets. However, there are trade-offs, 
biases, and limitations related to our data and methodology.  
 
First, there seem to be no other longitudinal datasets globally available (for 38 OECD countries) than 
Scopus (or Web of Science – but not OpenAlex; see Priem et al., 2022) that can be meaningfully used 
to examine changing field-normalized productivity over scientists’ lifetimes. In terms of author 
disambiguation, Scopus is more accurate than Web of Science (Sugimoto & Larivière 2018: 36), but it 
is certainly not perfect. National datasets are available for selected countries only and with selected 
parameters only (e.g., CRISTIN dataset for Norway, Academic Analytics dataset for the USA, and 
RADON dataset for Poland; see Albarrán et al., 2011; Kwiek & Roszka, 2023b; Nygaard et al., 2022; 
Savage & Olejniczak, 2021). As a result, no longitudinal and discipline-based global (as opposed to 
selected country-based) approaches to publishing productivity are currently possible without access to 
the global bibliometric datasets that provide metadata on all indexed publications over time. However, 
global bibliometric datasets come with their own limitations and biases, as has been widely discussed 
for at least two decades (see, e.g., Sugimoto & Larivière, 2018: 38–44 on the cultural biases of 
bibliometric data sources; Sugimoto & Larivière, 2023: 11–12 on published scientific document 
standing as a proxy for complex interpersonal and cognition processes of knowledge production that 
precede it).  
 
Second, the character of our dataset determines a reductive understanding of individual productivity in 
which only Scopus-indexed publications are counted, leaving aside nonindexed publications in English 
and most publications in local languages. However, our focus on STEMM and the three selected social 
science disciplines, here generally using English for global scholarly communication, makes the 
present research less biased (STEMM disciplines are covered in global datasets in much larger 
percentages than the humanities). Scopus is reported as being the largest quality-controlled citation 
index, covering substantially more years than Dimensions or the Web of Science Core Collection 
(Thelwall & Sud, 2022). Additionally, all nonpublishing academic activities do not count toward 
productivity, and the nonpublishers in science have not been analyzed. 
 
Third, the longitudinal nature of our study makes only the survivors our focus: We leave aside all 
scientists who are not research active for at least 25 years, which follows our definition of late-career 
scientists. As a result, being aware of high attrition rates in the STEMM disciplines (in OECD 
countries as recently analyzed in Kwiek & Szymula, 2024; and in the USA as recently analyzed in 
Spoon et al., 2023), we acknowledge a “success bias” in our research: The various mobility types 
between the analyzed productivity classes do not actually refer to all beginning, early-career, and mid-
career scientists (active in publishing for less than 5, less than 15, and less than 25 years, respectively) 
but to survivors in science only (see Wang & Barábasi, 2021: 241–245 on the underexploration of 
“failures” in science). Our study takes a long-term view in which, necessarily, because of the high 
attrition rate in science, the majority of currently active scientists are actually not represented.  
 
Fourth, our methodology has clear limitations that are especially evident if we compare the present study 
to single-nation longitudinal studies of publishing productivity. In single-nation studies, a wealth of 
national data are used (e.g., individual career histories with academic promotion dates, doctoral and 
postdoctoral dissertation details, research funding details, national classifications of disciplines, national 
rankings of institutions, etc.) that are currently not available for the 38 OECD countries. Additionally, 
our global study examines scientists from systems with different research funding levels and average 
individual publishing productivity.  
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Therefore, out of necessity, our analyses have had to rely on several proxies: (1) a commercial journal 
classification (Scopus All Science Journal Classification system, ASJC) and journal disciplinary 
classifications rather than a wealth of national disciplinary classifications (Baas et al., 2020); (2) data on 
individual Scopus IDs rather than data on “real scientists” with their national registry-based IDs 
(creating a fundamental ontological difference between traditional academic career research and 
bibliometric and bibliometric data-driven studies); (3) inferred rather than self-declared (or 
administratively-provided) gender, here based on gender-determining algorithms (probability threshold 
used: 0.85); (4) a single country affiliation and a single institutional affiliation rather than a plethora of 
changing country and institutional affiliations over a course of academic careers, at least for some 
percentage of scientists; (5) academic careers beginning with the first indexed publication and 25 years 
of research experience counted based on this publication date (i.e., publishing career)—rather than first 
employment in academia or beyond (i.e., academic or scientific career per se). In our research, the 
breadth of scientists’ activities in academia (e.g., mentoring students, refereeing papers, reviewing grant 
proposals, and editing journals) is ignored (Liu et al., 2023).  
 
Fifth, our approach to publishing productivity uses journal-level metrics of impact rather than more 
granular article-level metrics of impact, with all limitations (as discussed, e.g., in Weingart, 2004; an 
improvement of the present research would be to implement productivity measures based on the 
citation impact directly achieved by each individual publication, as suggested but not implemented in 
Carrasco & Ruiz-Castillo, 2012; see Electronic Supplementary Material); however, in logistic 
regression analyses, we use the field-weighted four-year citation impact assigned to each scientist and 
based on averaged citations to every article, here using Scopus 4-digit ASJC discipline classification).  
 
Sixth, our dataset does not include environmental variables that bear heavily on individual publishing 
productivity, especially on the productivity of women scientists: We were not able to examine “work 
climates” characterizing the basic units in which scientists work, which are reported to be especially 
important in STEM disciplines for both attrition (Spoon et al., 2023) and productivity (Branch, 2016; 
Fox & Mohapatra, 2007). We had no data about academic attitudes and behaviors, working time 
distribution, teaching/research preference, work-life balance, and household and parenting obligations, 
which have been routinely reported in productivity studies based on survey data (e.g., Kwiek, 2016 on 
11 European countries and Kwiek, 2018 on Poland), which leads us to the final limitation of the current 
study: no gender differentiation in examining publishing careers. 
 
As a result, finally, our research does not tackle an extremely relevant topic of gender differences in 
mobility between productivity classes over time, except for the regression models. Adding an additional 
dimension of gender to an examination of late-career scientists—technically perfectly feasible, with full 
data available—would complicate our global mobility picture substantially; as a result, we have decided 
to leave a study of gender disparities by discipline for another occasion to make sure this topic can be 
reflected on with sufficient depth.  
 
Our global and longitudinal approach to mobility between research productivity classes at the micro-
level of individual scientists uses various proxies and relies on different trade-offs but hopefully shows 
new patterns that are, so far, largely underexplored in academic career studies. Our future research 
involves a more in-depth study of gender-based mobility between productivity classes in the selected 
disciplines, especially in traditionally male-dominated mathematics and computing. 
 
This paper is accompanied by Supplementary Material that is available online. 
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Supplementary Table 1. Structure of the sample of all nonoccasional (with at least 10 
research articles in chapters in conference proceedings) OECD late-career (at least 25 years of 
publishing experience) scientists by gender, discipline, and country (N = 320,564) 
(frequencies and percentages) 
 

Total Female scientists Male scientists 
  N col % N col % row % N col % row % 

TOTAL 320,564 100 84,422 100 26.34 236,142 100 73.66 
SOCIAL 12,585 3,93 3,582 4.24 28.46 9,003 3.81 71.54 

Total 

STEMM 307,979 96,07 80,840 95.76 26.25 227,139 96.19 73.75 
AGRI 23,724 7.40 6,269 7.43 26.42 17,455 7.39 73.58 
BIO 45,813 14.29 14,526 17.21 31.71 31,287 13.25 68.29 
BUS 3,259 1.02 813 0.96 24.95 2,446 1.04 75.05 
CHEM 14,898 4.65 3,251 3.85 21.82 11,647 4.93 78.18 
COMP 7,644 2.38 1,187 1.41 15.53 6,457 2.73 84.47 
EARTH 14,370 4.48 2,536 3.00 17.65 11,834 5.01 82.35 
ECON 3,846 1.20 498 0.59 12.95 3,348 1.42 87.05 
ENG 12,814 4.00 1,166 1.38 9.10 11,648 4.93 90.90 
ENVIR 6,519 2.03 1,636 1.94 25.10 4,883 2.07 74.90 
IMMU 3,142 0.98 1,055 1.25 33.58 2,087 0.88 66.42 
MATER 5,839 1.82 1,139 1.35 19.51 4,700 1.99 80.49 
MATH 7,003 2.18 1,139 1.35 16.26 5,864 2.48 83.74 
MED 131,075 40.89 41,636 49.32 31.77 89,439 37.88 68.23 
NEURO 5,863 1.83 1,677 1.99 28.60 4,186 1.77 71.40 
PHYS 29,275 9.13 3,623 4.29 12.38 25,652 10.86 87.62 

Disciplines 

PSYCH 5,480 1.71 2,271 2.69 41.44 3,209 1.36 58.56 
United States 95,718 29.86 26,583 31.49 27.77 69,135 29.28 72.23 
Japan 29,358 9.16 2,953 3.50 10.06 26,405 11.18 89.94 
Italy 28,354 8.85 10,606 12.56 37.41 17,748 7.52 62.59 
UK 21,822 6.81 5,512 6.53 25.26 16,310 6.91 74.74 

Countries 

France 21,129 6.59 6,313 7.48 29.88 14,816 6.27 70.12 
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Germany 20,551 6.41 3,437 4.07 16.72 17,114 7.25 83.28 
Spain 12,978 4.05 4,436 5.25 34.18 8,542 3.62 65.82 
Canada 12,605 3.93 3,665 4.34 29.08 8,940 3.79 70.92 
Australia 10,374 3.24 3,118 3.69 30.06 7,256 3.07 69.94 
Netherlands 8,055 2.51 1,995 2.36 24.77 6,060 2.57 75.23 
Poland 5,619 1.75 1,901 2.25 33.83 3,718 1.57 66.17 
Sweden 4,894 1.53 1,372 1.63 28.03 3,522 1.49 71.97 
South Korea 4,847 1.51 627 0.74 12.94 4,220 1.79 87.06 
Switzerland 4,126 1.29 746 0.88 18.08 3,380 1.43 81.92 
Belgium 3,582 1.12 920 1.09 25.68 2,662 1.13 74.32 
Turkey 3,413 1.06 850 1.01 24.90 2,563 1.09 75.10 
Greece 3,412 1.06 873 1.03 25.59 2,539 1.08 74.41 
Israel 3,352 1.05 935 1.11 27.89 2,417 1.02 72.11 
Denmark 2,871 0.90 759 0.90 26.44 2,112 0.89 73.56 
Austria 2,808 0.88 561 0.66 19.98 2,247 0.95 80.02 
Rest 20,696 6.45 6,260 7.42 30.25 14,436 6.12 69.75 

 
Supplementary Table 2. Structure of the sample of all nonoccasional (with at least 10 research 
articles in chapters in conference proceedings) OECD late-career (at least 25 years of publishing 
experience) scientists by academic age (publishing experience) and gender (N=320,564) 
 
Academic age Female scientists Male scientists % Female 

scientists 
% Male scientist Total 

25 8,692 17,836 32.77 67.23 26,528 
26 8,072 17,640 31.39 68.61 25,712 
27 7,964 17,513 31.26 68.74 25,477 
28 7,591 17,780 29.92 70.08 25,371 
29 6,289 15,160 29.32 70.68 21,449 
30 5,857 14,623 28.60 71.40 20,480 
31 5,431 13,617 28.51 71.49 19,048 
32 4,792 12,507 27.70 72.30 17,299 
33 4,152 12,017 25.68 74.32 16,169 
34 4,052 11,580 25.92 74.08 15,632 
35 3,540 10,971 24.40 75.60 14,511 
36 2,994 9,816 23.37 76.63 12,810 
37 2,559 8,805 22.52 77.48 11,364 
38 2,349 7,927 22.86 77.14 10,276 
39 1,942 7,483 20.60 79.40 9,425 
40 1,812 6,905 20.79 79.21 8,717 
41 1,485 5,970 19.92 80.08 7,455 
42 1,340 5,764 18.86 81.14 7,104 
43 1,159 4,817 19.39 80.61 5,976 
44 957 4,267 18.32 81.68 5,224 
45 805 3,941 16.96 83.04 4,746 
46 617 3,460 15.13 84.87 4,077 
47 524 2,981 14.95 85.05 3,505 
48 447 2,581 14.76 85.24 3,028 
49 365 2,373 13.33 86.67 2,738 
50 321 2,166 12.91 87.09 2,487 
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Supplementary Table 3. Cut-off points (publication numbers: articles and chapters in conference 
proceedings) for membership in productivity deciles (N = 320,564), late-career scientists at an early-
career stage, by discipline 
 
Discipline Min 1 2 3 4 5 6 7 8 9 Max 
AGRI 0.00 0.81 1.79 2.82 3.96 5.29 6.81 8.71 11.42 16.21 107.48 
BIO 0.00 2.28 3.71 5.04 6.32 7.74 9.41 11.49 14.50 19.99 187.60 
BUS 0.00 1.01 2.06 3.06 4.11 5.28 6.45 8.11 10.18 13.80 75.41 
CHEM 0.00 1.78 3.40 5.10 6.83 8.71 10.99 14.12 18.25 25.49 175.49 
COMP 0.00 0.45 1.12 1.82 2.61 3.49 4.59 6.07 8.27 12.06 84.03 
EARTH 0.00 1.08 2.22 3.33 4.56 5.98 7.62 9.68 12.41 17.37 106.94 
ECON 0.00 1.06 1.96 2.72 3.54 4.44 5.52 6.80 8.66 11.71 61.44 
ENG 0.00 0.29 1.09 1.97 2.93 4.09 5.46 7.28 9.90 14.49 113.96 
ENVIR 0.00 0.65 1.63 2.77 3.95 5.28 7.02 9.08 12.23 17.73 126.98 
IMMU 0.00 2.10 3.70 5.15 6.58 8.14 9.83 11.80 14.94 19.99 107.99 
MATER 0.00 0.79 2.06 3.53 5.25 7.08 9.20 12.07 16.03 23.42 114.32 
MATH 0.00 0.97 1.81 2.62 3.48 4.36 5.54 7.09 9.06 12.76 74.59 
MED 0.00 0.86 2.08 3.46 5.00 6.86 9.11 12.01 16.24 23.87 264.17 
NEURO 0.00 2.32 3.63 4.80 6.01 7.31 8.86 10.88 13.91 19.50 151.95 
PHYS 0.00 1.72 3.51 5.34 7.26 9.45 11.90 15.23 20.32 30.68 323.72 
PSYCH 0.00 0.97 2.19 3.39 4.53 5.96 7.68 9.71 12.25 17.14 128.01 
SOCIAL 0.00 0.97 1.96 2.72 3.54 4.44 5.52 6.80 8.66 11.71 61.44 
STEMM 0.00 0.29 1.09 1.82 2.61 3.49 4.59 6.07 8.27 12.06 74.59 
TOTAL 0.00 0.29 1.09 1.82 2.61 3.49 4.59 6.07 8.27 11.71 61.44 
 
Supplementary Table 4. Cut-off points (publication numbers: articles and chapters in 
conference proceedings) for membership in productivity deciles (N = 320,564), late-career 
scientists at a mid-career stage, by discipline 
 
Discipline Min 1 2 3 4 5 6 7 8 9 Max 
AGRI 0.00 1.90 3.57 5.44 7.60 10.08 12.95 16.82 22.52 32.50 293.78 
BIO 0.00 3.19 5.40 7.48 9.71 12.22 15.25 19.11 24.91 35.51 403.08 
BUS 0.00 1.86 3.09 4.43 5.82 7.26 8.97 11.13 14.17 19.54 89.39 
CHEM 0.00 2.91 5.63 8.72 11.71 15.32 19.41 24.52 32.62 48.49 460.35 
COMP 0.00 1.37 2.53 3.69 4.93 6.57 8.48 10.97 14.69 21.58 221.27 
EARTH 0.00 2.27 4.45 6.63 9.00 11.62 14.74 18.88 24.74 35.22 261.89 
ECON 0.00 1.29 2.35 3.29 4.37 5.54 6.83 8.58 11.11 15.72 123.88 
ENG 0.00 1.06 2.46 4.03 5.82 7.86 10.57 14.14 19.25 28.71 227.00 
ENVIR 0.00 1.98 3.85 5.87 8.38 10.89 14.20 18.40 24.99 37.74 409.99 
IMMU 0.00 3.31 5.89 8.16 10.76 13.72 17.00 20.56 26.43 36.58 257.07 
MATER 0.00 2.09 4.77 7.53 10.61 14.17 18.73 24.64 32.77 48.78 344.97 
MATH 0.00 1.30 2.34 3.43 4.54 5.78 7.36 9.20 12.18 17.81 274.53 
MED 0.00 1.69 3.62 5.80 8.39 11.61 15.54 20.86 28.91 44.38 940.30 
NEURO 0.00 3.48 5.60 7.54 9.66 11.88 14.47 18.14 23.70 33.97 257.43 
PHYS 0.00 2.77 5.35 8.04 11.00 14.56 18.93 24.89 34.58 57.35 1,012.33 
PSYCH 0.00 1.68 3.42 5.17 7.24 9.46 11.94 15.57 20.63 29.22 150.48 
SOCIAL 0.00 1.29 2.35 3.29 4.37 5.54 6.83 8.58 11.11 15.72 89.39 
STEMM 0.00 1.06 2.34 3.43 4.54 5.78 7.36 9.20 12.18 17.81 221.27 
TOTAL 0.00 1.06 2.34 3.29 4.37 5.54 6.83 8.58 11.11 15.72 89.39 
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Journal prestige–normalized (exponential) approach to individual research 
productivity  
 
If a linear function was used, the value of an article that is published in the journal in the 99th journal 
percentile rank would be 0.99, which is slightly less than two articles published in the journals in the 
50th journal percentile rank—which does not seem to properly reflect academic workload. The value 
of a paper used here increases slowly in lower-ranked journals (range 1–50) and steeply for top-ranked 
journals (range 90–99) so that the difference in values between articles published in the journals in the 
99th and 50th percentile ranks is closer to fivefold (4.67). Within the four-year periods studied, we do 
not distinguish between changing percentile location of the journals in Scopus (the historic locations in 
the past are not available). We use the most recent (2023) Scopus percentile ranks as a proxy. For the 
vast majority of journals in STEMM, changes in percentile ranks are moderate. In Scopus, the journal 
ranking system that uses percentile ranks is based on the citations received by all publications from a 
journal in the previous four years. Hence, although journal percentile ranks are a proxy of quality 
(representing the overall impact of a journal rather than of a specific paper on the academic 
community), the individual articles in these journals are, on average, more or less cited.  
 
In a non-normalized approach to productivity (full counting method), an article published in any 
journal traditionally receives a value of 1, whereas, in our prestige-normalized approach (exponential) 
using a full counting method, articles in journals with a percentile rank of 90 receive a value of 0.77; 
articles published in journals with percentile ranks of 50 receive a value of 0.18, and so forth.  
 
The formula is as follows:  
 

padj(exp)=(perc/100)2.5 
 

where padj(exp) is the prestige adjusted article equivalent (exponential) and perc is the percentile of the 
journal in which the article was published, as assigned by Scopus. So with an output of four articles in 
the 50th percentile in a period of four years, productivity is 0.177 times 4 and divided by 4; with a 
single article in the 99th percentile, it is 0.975 divided by 4, that is, 0.248. The exponential approach 
imposes a “penalty” that is particularly severe for lower percentile ranks and diminishes as the 
journal’s percentile rank increases. The formula was first used in a previous study (Kwiek & Roszka, 
2024b). 
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Supplementary Table 5. Mobility of bottom performers between two career stages: early career (initial 
stage) and mid-career (target stage): From which initial productivity deciles (at an early-career stage) do 
bottom-performing scientists at a mid-career stage come from? Late-career scientists who were bottom 
performers at a mid-career stage (N=32,063) by academic discipline and initial productivity decile 
(frequencies and percentages)  
 

 

 
Total 
 

Bottom 
10% 

Decile 
2 

Decile 
3 

Decile 
4 

Decile 
5 

Decile 
6 

Decile 
7 

Decile 
8 

Decile 
9 

Top 
10% 

Late-career scientists who were bottom performers at a mid-career stage 
N 32,063 11,996 7,325 4,825 3,091 2,036 1,277 785 425 221 82 TOTAL 
% 100 37.41 22.85 15.05 9.64 6.35 3.98 2.45 1.33 0.69 0.26 
N 1,259 433 294 186 125 95 60 30 18 15 3 SOCIAL 
% 100 34.39 23.35 14.77 9.93 7.55 4.77 2.38 1.43 1.19 0.24 
N 30,804 11,563 7,031 4,639 2,966 1,941 1,217 755 407 206 79 STEMM 
% 100 37.54 22.82 15.06 9.63 6.30 3.95 2.45 1.32 0.67 0.26 
N 2,373 916 556 365 239 143 77 42 18 13 4 AGRI 

 % 100 38.60 23.43 15.38 10.07 6.03 3.24 1.77 0.76 0.55 0.17 
N 4,582 1,675 1,008 680 427 312 209 145 66 45 15 BIO 

 % 100 36.56 22.00 14.84 9.32 6.81 4.56 3.16 1.44 0.98 0.33 
N 326 99 73 48 30 30 18 15 5 7 1 BUS 

 % 100 30.37 22.39 14.72 9.20 9.20 5.52 4.60 1.53 2.15 0.31 
N 1,490 611 361 226 129 78 47 12 17 8 1 CHEM 

 % 100 41.01 24.23 15.17 8.66 5.23 3.15 0.81 1.14 0.54 0.07 
N 765 248 159 123 77 57 46 36 13 5 1 COMP 

 % 100 32.42 20.78 16.08 10.07 7.45 6.01 4.71 1.70 0.65 0.13 
N 1,437 580 333 205 138 81 48 35 9 5 3 EARTH 

 % 100 40.36 23.17 14.27 9.60 5.64 3.34 2.44 0.63 0.35 0.21 
N 385 115 98 64 39 28 18 10 8 4 1 ECON 

 % 100 29.87 25.45 16.62 10.13 7.27 4.68 2.60 2.08 1.04 0.26 
N 1,282 474 267 202 120 94 61 30 21 10 3 ENG 

 % 100 36.97 20.83 15.76 9.36 7.33 4.76 2.34 1.64 0.78 0.23 
N 652 232 135 107 72 44 23 23 9 4 3 ENVIR 

 % 100 35.58 20.71 16.41 11.04 6.75 3.53 3.53 1.38 0.61 0.46 
N 315 113 81 39 27 22 9 12 6 4 2 IMMU 

 % 100 35.87 25.71 12.38 8.57 6.98 2.86 3.81 1.90 1.27 0.63 
N 584 226 142 102 42 40 21 6 4 1  MATER 

 % 100 38.70 24.32 17.47 7.19 6.85 3.60 1.03 0.68 0.17  
N 701 254 179 97 66 47 31 14 7 4 2 MATH 

 % 100 36.23 25.53 13.84 9.42 6.70 4.42 2.00 1.00 0.57 0.29 
N 13,108 4,767 2,989 2,039 1,322 856 525 325 188 76 21 MED 

 % 100 36.37 22.80 15.56 10.09 6.53 4.01 2.48 1.43 0.58 0.16 
N 587 230 125 91 61 22 26 18 8 4 2 NEURO 

 % 100 39.18 21.29 15.50 10.39 3.75 4.43 3.07 1.36 0.68 0.34 
N 2,928 1,237 696 363 246 145 94 57 41 27 22 PHYS 

 % 100 42.25 23.77 12.40 8.40 4.95 3.21 1.95 1.40 0.92 0.75 
N 548 219 123 74 56 37 24 5 5 4 1 PSYCH 
% 100 39.96 22.45 13.50 10.22 6.75 4.38 0.91 0.91 0.73 0.18 
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Supplementary Table 6. Mobility of bottom performers between two career stages: mid-career (initial 
stage) and late career (target stage): From which initial productivity deciles (at a mid-career stage) do 
bottom-performing scientists at a late career stage come from? Late-career scientists who were bottom 
performers at a late-career stage (N=32,075) by academic discipline and initial productivity decile 
(frequencies and percentages) 
 

 
Total 
 

Bottom 
10% 

Decile 
2 

Decile 
3 

Decile 
4 

Decile 
5 

Decile 
6 

Decile 
7 

Decile 
8 

Decile 
9 

Top 
10% 

Late-career scientists who are bottom performers at a late career stage 
N 32,075 9,836 7,051 5,052 3,473 2,450 1,691 1,127 726 447 222 TOTAL 
% 100 30.67 21.98 15.75 10.83 7.64 5.27 3.51 2.26 1.39 0.69 
N 1,259 400 254 201 154 89 70 47 21 14 9 SOCIAL 
% 100 31.77 20.17 15.97 12.23 7.07 5.56 3.73 1.67 1.11 0.71 
N 30,816 9,436 6,797 4,851 3,319 2,361 1,621 1,080 705 433 213 STEMM 
% 100 30.62 22.06 15.74 10.77 7.66 5.26 3.50 2.29 1.41 0.69 
N 2,373 764 579 372 245 164 106 80 39 18 6 AGRI 

 % 100 32.20 24.40 15.68 10.32 6.91 4.47 3.37 1.64 0.76 0.25 
N 4,582 1,295 905 751 486 392 287 194 126 106 40 BIO 

 % 100 28.26 19.75 16.39 10.61 8.56 6.26 4.23 2.75 2.31 0.87 
N 326 86 74 56 34 23 25 16 6 4 2 BUS 

 % 100 26.38 22.70 17.18 10.43 7.06 7.67 4.91 1.84 1.23 0.61 
N 1,490 498 349 222 157 107 69 46 21 15 6 CHEM 

 % 100 33.42 23.42 14.90 10.54 7.18 4.63 3.09 1.41 1.01 0.40 
N 767 217 177 121 77 66 51 30 17 9 2 COMP 

 % 100 28.29 23.08 15.78 10.04 8.60 6.65 3.91 2.22 1.17 0.26 
N 1,437 503 323 211 150 87 73 46 24 16 4 EARTH 

 % 100 35.00 22.48 14.68 10.44 6.05 5.08 3.20 1.67 1.11 0.28 
N 385 112 68 65 54 32 24 14 10 3 3 ECON 

 % 100 29.09 17.66 16.88 14.03 8.31 6.23 3.64 2.60 0.78 0.78 
N 1,282 383 279 206 168 111 65 34 22 8 6 ENG 

 % 100 29.88 21.76 16.07 13.10 8.66 5.07 2.65 1.72 0.62 0.47 
N 652 187 140 103 79 54 41 23 16 6 3 ENVIR 

 % 100 28.68 21.47 15.80 12.12 8.28 6.29 3.53 2.45 0.92 0.46 
N 319 113 59 38 34 27 18 16 7 7  IMMU 

 % 100 35.42 18.50 11.91 10.66 8.46 5.64 5.02 2.19 2.19  
N 590 190 137 88 74 38 30 19 8 4 2 MATER 

 % 100 32.20 23.22 14.92 12.54 6.44 5.08 3.22 1.36 0.68 0.34 
N 701 227 158 121 75 52 30 21 8 7 2 MATH 

 % 100 32.38 22.54 17.26 10.70 7.42 4.28 3.00 1.14 1.00 0.29 
N 13,108 3,864 2,900 2,084 1,451 1,027 685 466 332 192 107 MED 

 % 100 29.48 22.12 15.90 11.07 7.83 5.23 3.56 2.53 1.46 0.82 
N 587 184 123 84 70 39 29 25 19 12 2 NEURO 

 % 100 31.35 20.95 14.31 11.93 6.64 4.94 4.26 3.24 2.04 0.34 
N 2,928 1,011 668 450 253 197 137 80 66 33 33 PHYS 

 % 100 34.53 22.81 15.37 8.64 6.73 4.68 2.73 2.25 1.13 1.13 
N 548 202 112 80 66 34 21 17 5 7 4 PSYCH 
% 100 36.86 20.44 14.60 12.04 6.20 3.83 3.10 0.91 1.28 0.73 

 



Supplementary Table 7. Inverted correlation matrix, main diagonal, model of odds ratio estimates of membership in the class of top productive mid-career 

Variable 
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Male 1.012 1.021 1.013 1.015 1.000 1.009 1.010 1.000 1.012 1.028 1.008 1.016 1.011 1.018 1.005 1.026 
Avg. FWCI 4y Early 1.145 1.062 1.041 1.058 1.031 1.097 1.058 1.068 1.135 1.103 1.101 1.096 1.040 1.050 1.065 1.040 
Inter. Collab. Rate Early 1.102 1.133 1.038 1.105 1.029 1.245 1.021 1.052 1.112 1.153 1.152 1.026 1.103 1.103 1.446 1.040 
Median Team Size Early 1.110 1.163 1.054 1.101 1.024 1.284 1.047 1.042 1.142 1.198 1.168 1.060 1.097 1.145 1.435 1.059 
Top Early 1.070 1.031 1.030 1.064 1.019 1.070 1.053 1.035 1.058 1.081 1.073 1.072 1.028 1.061 1.163 1.042 

 
Supplementary Table 8. Inverted correlation matrix, main diagonal, model of odds ratio estimates of membership in the class of bottom productive mid-career 

Variable 
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Male 1.007 1.016 1.005 1.012 1.000 1.004 1.009 1.000 1.008 1.015 1.005 1.016 1.005 1.008 1.005 1.013 
Avg. FWCI 4y Early 1.160 1.058 1.070 1.053 1.042 1.130 1.065 1.085 1.161 1.091 1.111 1.091 1.042 1.068 1.063 1.073 
Inter. Collab. Rate Early 1.101 1.137 1.048 1.103 1.046 1.250 1.034 1.067 1.111 1.161 1.159 1.050 1.108 1.108 1.416 1.048 
Median Team Size Early 1.133 1.168 1.085 1.111 1.056 1.283 1.054 1.086 1.196 1.202 1.224 1.065 1.152 1.131 1.400 1.088 
Bottom Early 1.123 1.036 1.112 1.066 1.094 1.113 1.086 1.141 1.169 1.074 1.179 1.108 1.098 1.065 1.047 1.116 
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Supplementary Table 9. Inverted correlation matrix, main diagonal, main diagonal, and model of odds ratio estimates of membership in the class of top productive 
late career 
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Male 1.016 1.019 1.012 1.015 1.002 1.010 1.011 1.003 1.015 1.022 1.011 1.015 1.010 1.021 1.005 1.030 
Avg. FWCI 4y Mid 1.165 1.058 1.036 1.079 1.045 1.080 1.054 1.056 1.105 1.135 1.135 1.086 1.059 1.111 1.177 1.075 
Inter. Collab. Rate Mid 1.152 1.176 1.076 1.153 1.069 1.264 1.056 1.085 1.185 1.177 1.175 1.034 1.169 1.142 1.499 1.087 
Median Team Size Mid 1.149 1.194 1.062 1.136 1.053 1.320 1.081 1.050 1.142 1.243 1.197 1.054 1.153 1.183 1.492 1.096 
TOP200 1.015 1.009 1.001 1.013 1.008 1.013 1.010 1.020 1.015 1.010 1.017 1.014 1.016 1.014 1.005 1.021 
Top Mid 1.083 1.041 1.039 1.080 1.034 1.075 1.052 1.053 1.067 1.077 1.106 1.059 1.048 1.066 1.207 1.074 

 
Supplementary Table 10. Inverted correlation matrix, main diagonal, main diagonal, model of odds ratio estimates of membership in the class of 
bottom productive late career 
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Male 1.013 1.013 1.006 1.012 1.002 1.007 1.011 1.003 1.013 1.011 1.008 1.014 1.004 1.010 1.005 1.023 
Avg. FWCI 4y Mid 1.167 1.051 1.047 1.060 1.046 1.088 1.063 1.064 1.122 1.123 1.114 1.086 1.058 1.112 1.151 1.118 
Inter. Collab. Rate Mid 1.143 1.176 1.085 1.150 1.073 1.273 1.060 1.085 1.173 1.181 1.172 1.055 1.167 1.141 1.484 1.090 
Median Team Size Mid 1.160 1.198 1.076 1.141 1.059 1.314 1.089 1.058 1.150 1.241 1.211 1.055 1.187 1.176 1.460 1.109 
TOP200 1.011 1.007 1.001 1.011 1.008 1.011 1.011 1.015 1.011 1.010 1.015 1.015 1.011 1.014 1.006 1.018 
Bottom Mid 1.080 1.029 1.078 1.056 1.051 1.085 1.079 1.075 1.084 1.050 1.093 1.095 1.077 1.041 1.055 1.138 
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Supplementary Table 11. Logistic regression statistics: odds ratio estimates of membership in the class of global bottom  productive mid-career (the bottom 10%, 
separately for each academic discipline) (N = 320,564) 
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R2 0.14 0.10 0.08 0.13 0.08 0.14 0.08 0.11 0.11 0.10 0.12 0.12 0.10 0.14 0.14 0.16 
Male 1.20 (2) 0.72 (3) 1.32 1.21 1.04 1.15 1.08 1.48 (1) 1.31 0.68 (2) 1.22 1.01 1.02 (3) 0.80 (3) 1.14 1.01 (2) 
Avg. FWCI 4y Early 0.50 (3) 0.88 (3) 0.84 (2) 0.77 0.80 0.70 0.61 0.73 (3) 0.69 0.79 (3) 0.75 (1) 0.55 0.98 (3) 0.59 (3) 0.97 (3) 0.56 (3) 
Inter. Collab. Rate Early 1.00 (3) 0.99 (3) 0.99 (3) 0.99 (3) 1.00 (3) 0.99 (3) 1.00 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 
Median Team Size Early 0.95 (3) 1.02 (3) 0.85 (1) 1.02 (1) 0.98 0.99 (1) 0.86 (1) 1.13 (3) 0.99 (2) 1.09 (3) 0.96 (3) 0.89 0.98 (3) 0.99 (3) 1.01 (3) 0.89 (3) 
Bottom Early 4.70 (3) 6.49 (3) 3.39 7.97 4.23 5.71 3.12 5.72 (3) 4.17 5.86 (2) 5.56 4.24 6.28 (3) 5.76 (3) 8.67 4.31 (1) 
Constant 0.18 (1) 0.13 (3) 0.16 0.10 0.13 0.15 0.22 0.06 0.14 0.11 0.13 0.24 0.10 (3) 0.24 (2) 0.09 0.26 
Note: (1) = p-value ≤ 0.05; (2) = p-value ≤ 0.01; (3) = p-value ≤ 0.001 

 
Supplementary Table 12. Logistic regression statistics: odds ratio estimates of membership in the class of global bottom productive late career (the bottom 10%, 
separately for each academic discipline) (N = 320,564) 
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R2 0.11 0.06 0.08 0.10 0.06 0.11 0.09 0.09 0.07 0.11 0.10 0.10 0.08 0.09 0.11 0.13 
Male 1.36 1.00 (3) 1.35 1.23 1.15 1.13 1.09 1.35 1.29 0.72 1.07 1.02 1.17 (3) 0.90 1.21 1.18 
Avg. FWCI 4y Mid 0.40 0.84 (3) 0.71 0.62 (1) 0.86 0.68 (3) 0.63 (2) 0.65 (2) 0.65 0.68 (1) 0.54 0.48 (1) 0.91 (3) 0.62 (1) 0.94 (1) 0.52 
Inter. Collab. Rate Mid 1.00 (3) 0.99 (3) 0.99 0.99 (3) 1.00 (3) 1.00 (3) 1.00 (3) 0.99 (3) 0.99 (3) 1.00 (3) 0.99 (3) 1.00 (3) 0.99 (3) 0.99 (3) 0.99 (3) 0.99 (3) 
Median Team Size Mid 0.97 (2) 0.97 (3) 0.82 0.98 (3) 0.89 0.96 (3) 0.71 (2) 1.16 (3) 1.01 (2) 1.01 (3) 1.00 (1) 0.89 (3) 0.95 (3) 0.96 (3) 1.04 (3) 0.94 (2) 
TOP200 0.66 0.76 (2) 0.83 0.68 0.93 0.69 1.06 0.45 0.72 0.63 0.67 0.67 0.59 (3) 0.77 0.66 0.87 
Bottom Mid 3.14 3.68 (2) 2.28 4.34 3.80 4.51 2.80 3.36 3.04 5.24 3.40 3.54 3.46 (3) 3.85 4.96 3.95 
Constant 0.23 0.20 (1) 0.30 0.17 0.15 0.19 0.33 0.09 0.16 0.21 0.22 0.26 0.17 (2) 0.30 0.12 0.23 
Note: (1) = p-value ≤ 0.05; (2) = p-value ≤ 0.01; (3) = p-value ≤ 0.001 

 


